Access the full text.
Sign up today, get DeepDyve free for 14 days.
References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.
This article reviews and advances existing literature concerning big datadriven algorithmic decision-making. Using and replicating data from Deloitte and Pew Research Center, I performed analyses and made estimates regarding % of Facebook users who have not/have intentionally tried to influence the content that appears on their news feed (by age group), % of U.S. adults who say the content on social media does/does not provide an accurate picture of how society feels about important issues, % of social media users who say it is not at all acceptable/not very acceptable/somewhat acceptable/very acceptable for social media sites to use data about them and their online activities to recommend events in their area/recommend someone they might want to know/show them ads for products and services/show them messages from political campaigns, and among U.S. social media users, the % of who say it would be hard to give up/not hard to give up social media (by age group). Data were analyzed using structural equation modeling. Keywords: automation; autonomy; big data; algorithmic decision-making; human behavior
Contemporary Readings in Law and Social Justice – Addleton Academic Publishers
Published: Jan 1, 2019
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.