Access the full text.
Sign up today, get DeepDyve free for 14 days.
References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.
Empirical evidence on deep learning-enabled smart process planning has been scarcely documented in the literature. Using and replicating data from Deloitte, KSM, PwC, SME, Statista, and Tractica, we performed analyses and made estimates regarding top challenges to implementing smart manufacturing solutions (%) and business organizations’ reasons for adopting artificial intelligence (%). Data were analyzed using structural equation modeling. JEL codes: E24; J21; J54; J64 Keywords: smart process planning; cyber-physical system-based manufacturing
Journal of Self-Governance and Management Economics – Addleton Academic Publishers
Published: Jan 1, 2020
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.