Get 20M+ Full-Text Papers For Less Than $1.50/day. Subscribe now for You or Your Team.

Learn More →

Adipocytes Sequester and Metabolize the Chemotherapeutic Daunorubicin

Adipocytes Sequester and Metabolize the Chemotherapeutic Daunorubicin Obesity is associated with poorer outcome for many cancers. Previously, we observed that adipocytes protect acute lymphoblastic leukemia (ALL) cells from the anthracycline, daunorubicin. In this study, it is determined whether adipocytes clear daunorubicin from the tumor microenvironment (TME). Intracellular daunorubicin concentrations were evaluated using fluorescence. Daunorubicin and its largely inactive metabolite, daunorubicinol, were analytically measured in media, cells, and tissues using liquid chromatography/mass spectrometry (LC/MS). Expression of daunorubicin-metabolizing enzymes, aldo-keto reductases (AKR1A1, AKR1B1, AKR1C1, AKR1C2, AKR1C3, and AKR7A2) and carbonyl reductases (CBR1, CBR3), in human adipose tissue, were queried using public databases and directly measured by quantitative PCR (qPCR) and immunoblot. Adipose tissue AKR activity was measured by colorimetric assay. Adipocytes absorbed and efficiently metabolized daunorubicin to daunorubicinol, reducing its antileukemia effect in the local microenvironment. Murine studies confirmed adipose tissue conversion of daunorubicin to daunorubicinol in vivo. Adipocytes expressed high levels of AKR and CBR isoenzymes that deactivate anthracyclines. Indeed, adipocyte protein levels of AKR1C1, AKR1C2, and AKR1C3 are higher than all other human noncancerous cell types. To our knowledge, this is the first demonstration that adipocytes metabolize and inactivate a therapeutic drug. Adipocyte-mediated daunorubicin metabolism reduces active drug concentration in the TME. These results could be clinically important for adipocyte-rich cancer microenvironments such as omentum, breast, and marrow. As AKR and CBR enzymes metabolize several drugs, and can be expressed at higher levels in obese individuals, this proof-of-principle finding has important implications across many diseases. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Molecular Cancer Research American Association of Cancer Research

Adipocytes Sequester and Metabolize the Chemotherapeutic Daunorubicin

Molecular Cancer Research , Volume 15 (12) – Dec 1, 2017

Abstract

Obesity is associated with poorer outcome for many cancers. Previously, we observed that adipocytes protect acute lymphoblastic leukemia (ALL) cells from the anthracycline, daunorubicin. In this study, it is determined whether adipocytes clear daunorubicin from the tumor microenvironment (TME). Intracellular daunorubicin concentrations were evaluated using fluorescence. Daunorubicin and its largely inactive metabolite, daunorubicinol, were analytically measured in media, cells, and tissues using liquid chromatography/mass spectrometry (LC/MS). Expression of daunorubicin-metabolizing enzymes, aldo-keto reductases (AKR1A1, AKR1B1, AKR1C1, AKR1C2, AKR1C3, and AKR7A2) and carbonyl reductases (CBR1, CBR3), in human adipose tissue, were queried using public databases and directly measured by quantitative PCR (qPCR) and immunoblot. Adipose tissue AKR activity was measured by colorimetric assay. Adipocytes absorbed and efficiently metabolized daunorubicin to daunorubicinol, reducing its antileukemia effect in the local microenvironment. Murine studies confirmed adipose tissue conversion of daunorubicin to daunorubicinol in vivo. Adipocytes expressed high levels of AKR and CBR isoenzymes that deactivate anthracyclines. Indeed, adipocyte protein levels of AKR1C1, AKR1C2, and AKR1C3 are higher than all other human noncancerous cell types. To our knowledge, this is the first demonstration that adipocytes metabolize and inactivate a therapeutic drug. Adipocyte-mediated daunorubicin metabolism reduces active drug concentration in the TME. These results could be clinically important for adipocyte-rich cancer microenvironments such as omentum, breast, and marrow. As AKR and CBR enzymes metabolize several drugs, and can be expressed at higher levels in obese individuals, this proof-of-principle finding has important implications across many diseases.

Loading next page...
 
/lp/american-association-of-cancer-research/adipocytes-sequester-and-metabolize-the-chemotherapeutic-daunorubicin-s0tgIham7A

References (34)

Publisher
American Association of Cancer Research
Copyright
©2017 American Association for Cancer Research.
ISSN
1541-7786
eISSN
1557-3125
DOI
10.1158/1541-7786.MCR-17-0338
pmid
29117945
Publisher site
See Article on Publisher Site

Abstract

Obesity is associated with poorer outcome for many cancers. Previously, we observed that adipocytes protect acute lymphoblastic leukemia (ALL) cells from the anthracycline, daunorubicin. In this study, it is determined whether adipocytes clear daunorubicin from the tumor microenvironment (TME). Intracellular daunorubicin concentrations were evaluated using fluorescence. Daunorubicin and its largely inactive metabolite, daunorubicinol, were analytically measured in media, cells, and tissues using liquid chromatography/mass spectrometry (LC/MS). Expression of daunorubicin-metabolizing enzymes, aldo-keto reductases (AKR1A1, AKR1B1, AKR1C1, AKR1C2, AKR1C3, and AKR7A2) and carbonyl reductases (CBR1, CBR3), in human adipose tissue, were queried using public databases and directly measured by quantitative PCR (qPCR) and immunoblot. Adipose tissue AKR activity was measured by colorimetric assay. Adipocytes absorbed and efficiently metabolized daunorubicin to daunorubicinol, reducing its antileukemia effect in the local microenvironment. Murine studies confirmed adipose tissue conversion of daunorubicin to daunorubicinol in vivo. Adipocytes expressed high levels of AKR and CBR isoenzymes that deactivate anthracyclines. Indeed, adipocyte protein levels of AKR1C1, AKR1C2, and AKR1C3 are higher than all other human noncancerous cell types. To our knowledge, this is the first demonstration that adipocytes metabolize and inactivate a therapeutic drug. Adipocyte-mediated daunorubicin metabolism reduces active drug concentration in the TME. These results could be clinically important for adipocyte-rich cancer microenvironments such as omentum, breast, and marrow. As AKR and CBR enzymes metabolize several drugs, and can be expressed at higher levels in obese individuals, this proof-of-principle finding has important implications across many diseases.

Journal

Molecular Cancer ResearchAmerican Association of Cancer Research

Published: Dec 1, 2017

There are no references for this article.