Get 20M+ Full-Text Papers For Less Than $1.50/day. Subscribe now for You or Your Team.

Learn More →

EGFR-Mediated Reactivation of MAPK Signaling Contributes to Insensitivity of BRAF-Mutant Colorectal Cancers to RAF Inhibition with Vemurafenib

EGFR-Mediated Reactivation of MAPK Signaling Contributes to Insensitivity of BRAF-Mutant... BRAF mutations occur in 10% to 15% of colorectal cancers and confer adverse outcome in the metastatic setting. Although RAF inhibitors such as vemurafenib (PLX4032) have proven effective in the treatment of BRAF-mutant melanoma, they are surprisingly ineffective in BRAF-mutant colorectal cancers, and the reason for this disparity remains unclear. Compared with BRAF-mutant melanoma cells, BRAF-mutant colorectal cancer cells were less sensitive to vemurafenib, and phospho-extracellular signal-regulated kinase (P-ERK) suppression was not sustained in response to treatment. Although transient inhibition of P-ERK by vemurafenib was observed in colorectal cancer, rapid ERK reactivation occurred through epidermal growth factor receptor (EGFR)-mediated activation of RAS and CRAF. BRAF-mutant colorectal cancers expressed greater levels of phospho-EGFR than BRAF-mutant melanomas, suggesting that colorectal cancers are specifically poised for EGFR-mediated resistance. Combined RAF and EGFR inhibition blocked reactivation of mitogen-activated protein kinase (MAPK) signaling in BRAF-mutant colorectal cancer cells and markedly improved efficacy in vitro and in vivo. These findings support the evaluation of combined RAF and EGFR inhibition in patients with BRAF-mutant colorectal cancer. Significance: BRAF valine 600 (V600) mutations occur in 10% to 15% of colorectal cancers, yet these tumors show a surprisingly low clinical response rate (∼5%) to selective RAF inhibitors such as vemurafenib, which have produced dramatic response rates (60%–80%) in melanomas harboring the identical BRAF V600 mutation. We found that EGFR-mediated MAPK pathway reactivation leads to resistance to vemurafenib in BRAF-mutant colorectal cancers and that combined RAF and EGFR inhibition can lead to sustained MAPK pathway suppression and improved efficacy in vitro and in tumor xenografts. Cancer Discovery; 2(3); 227–35. ©2012 AACR. This article is highlighted in the In This Issue feature, p. 193 http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Cancer Discovery American Association of Cancer Research

EGFR-Mediated Reactivation of MAPK Signaling Contributes to Insensitivity of BRAF-Mutant Colorectal Cancers to RAF Inhibition with Vemurafenib

EGFR-Mediated Reactivation of MAPK Signaling Contributes to Insensitivity of BRAF-Mutant Colorectal Cancers to RAF Inhibition with Vemurafenib

Cancer Discovery , Volume 2 (3): 9 – Mar 1, 2012

Abstract

BRAF mutations occur in 10% to 15% of colorectal cancers and confer adverse outcome in the metastatic setting. Although RAF inhibitors such as vemurafenib (PLX4032) have proven effective in the treatment of BRAF-mutant melanoma, they are surprisingly ineffective in BRAF-mutant colorectal cancers, and the reason for this disparity remains unclear. Compared with BRAF-mutant melanoma cells, BRAF-mutant colorectal cancer cells were less sensitive to vemurafenib, and phospho-extracellular signal-regulated kinase (P-ERK) suppression was not sustained in response to treatment. Although transient inhibition of P-ERK by vemurafenib was observed in colorectal cancer, rapid ERK reactivation occurred through epidermal growth factor receptor (EGFR)-mediated activation of RAS and CRAF. BRAF-mutant colorectal cancers expressed greater levels of phospho-EGFR than BRAF-mutant melanomas, suggesting that colorectal cancers are specifically poised for EGFR-mediated resistance. Combined RAF and EGFR inhibition blocked reactivation of mitogen-activated protein kinase (MAPK) signaling in BRAF-mutant colorectal cancer cells and markedly improved efficacy in vitro and in vivo. These findings support the evaluation of combined RAF and EGFR inhibition in patients with BRAF-mutant colorectal cancer. Significance: BRAF valine 600 (V600) mutations occur in 10% to 15% of colorectal cancers, yet these tumors show a surprisingly low clinical response rate (∼5%) to selective RAF inhibitors such as vemurafenib, which have produced dramatic response rates (60%–80%) in melanomas harboring the identical BRAF V600 mutation. We found that EGFR-mediated MAPK pathway reactivation leads to resistance to vemurafenib in BRAF-mutant colorectal cancers and that combined RAF and EGFR inhibition can lead to sustained MAPK pathway suppression and improved efficacy in vitro and in tumor xenografts. Cancer Discovery; 2(3); 227–35. ©2012 AACR. This article is highlighted in the In This Issue feature, p. 193

Loading next page...
 
/lp/american-association-of-cancer-research/egfr-mediated-reactivation-of-mapk-signaling-contributes-to-jPpqgGNOg5

References (24)

Publisher
American Association of Cancer Research
Copyright
©2012 American Association for Cancer Research.
ISSN
2159-8274
eISSN
2159-8290
DOI
10.1158/2159-8290.cd-11-0341
Publisher site
See Article on Publisher Site

Abstract

BRAF mutations occur in 10% to 15% of colorectal cancers and confer adverse outcome in the metastatic setting. Although RAF inhibitors such as vemurafenib (PLX4032) have proven effective in the treatment of BRAF-mutant melanoma, they are surprisingly ineffective in BRAF-mutant colorectal cancers, and the reason for this disparity remains unclear. Compared with BRAF-mutant melanoma cells, BRAF-mutant colorectal cancer cells were less sensitive to vemurafenib, and phospho-extracellular signal-regulated kinase (P-ERK) suppression was not sustained in response to treatment. Although transient inhibition of P-ERK by vemurafenib was observed in colorectal cancer, rapid ERK reactivation occurred through epidermal growth factor receptor (EGFR)-mediated activation of RAS and CRAF. BRAF-mutant colorectal cancers expressed greater levels of phospho-EGFR than BRAF-mutant melanomas, suggesting that colorectal cancers are specifically poised for EGFR-mediated resistance. Combined RAF and EGFR inhibition blocked reactivation of mitogen-activated protein kinase (MAPK) signaling in BRAF-mutant colorectal cancer cells and markedly improved efficacy in vitro and in vivo. These findings support the evaluation of combined RAF and EGFR inhibition in patients with BRAF-mutant colorectal cancer. Significance: BRAF valine 600 (V600) mutations occur in 10% to 15% of colorectal cancers, yet these tumors show a surprisingly low clinical response rate (∼5%) to selective RAF inhibitors such as vemurafenib, which have produced dramatic response rates (60%–80%) in melanomas harboring the identical BRAF V600 mutation. We found that EGFR-mediated MAPK pathway reactivation leads to resistance to vemurafenib in BRAF-mutant colorectal cancers and that combined RAF and EGFR inhibition can lead to sustained MAPK pathway suppression and improved efficacy in vitro and in tumor xenografts. Cancer Discovery; 2(3); 227–35. ©2012 AACR. This article is highlighted in the In This Issue feature, p. 193

Journal

Cancer DiscoveryAmerican Association of Cancer Research

Published: Mar 1, 2012

There are no references for this article.