Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Sensitivity of the Cervical Transformation Zone to Estrogen-induced Squamous Carcinogenesis

Sensitivity of the Cervical Transformation Zone to Estrogen-induced Squamous Carcinogenesis Regions where one type of epithelium replaces another (metaplasia) have a predilection for cancer formation. Environmental factors are closely linked to metaplastic carcinogenesis. In particular, cervical cancers associated with human papillomavirus (HPV) infection develop primarily at the transformation zone, a region where metaplastic squamous cells are detected in otherwise columnar epithelial-lined endocervical glands. Previously, we reported estrogen-induced multistage vaginal and cervical carcinogenesis in transgenic mice expressing HPV16 oncogenes in basal squamous epithelial cells. In the present study to investigate the threshold neoplastic response to exogenous estrogen, we treated groups of transgenic mice with lower hormone doses. A 5-fold reduction in estrogen dose induced squamous carcinogenesis solely at the cervical transformation zone compared with other reproductive tract sites. Further study delineated stages of transformation zone carcinogenesis, including formation of hyperplastic lower uterine glands and emergence of multiple foci of squamous metaplasia from individual stem-like glandular reserve cells, followed by neoplastic progression of metaplasia to dysplasia and squamous cancer. We propose that a combination of low-dose estrogen and low-level HPV oncogene expression biases transformation zone glandular reserve cells toward squamous rather than columnar epithelial fate decisions. Synergistic activation of proliferation by viral oncoprotein cell cycle dysregulation and estrogen receptor signaling, together with altered paracrine stromal-epithelial interactions, may conspire to support and promote neoplastic progression and cancer formation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Cancer Research American Association of Cancer Research

Sensitivity of the Cervical Transformation Zone to Estrogen-induced Squamous Carcinogenesis

Sensitivity of the Cervical Transformation Zone to Estrogen-induced Squamous Carcinogenesis

Cancer Research , Volume 60 (5): 1267 – Mar 1, 2000

Abstract

Regions where one type of epithelium replaces another (metaplasia) have a predilection for cancer formation. Environmental factors are closely linked to metaplastic carcinogenesis. In particular, cervical cancers associated with human papillomavirus (HPV) infection develop primarily at the transformation zone, a region where metaplastic squamous cells are detected in otherwise columnar epithelial-lined endocervical glands. Previously, we reported estrogen-induced multistage vaginal and cervical carcinogenesis in transgenic mice expressing HPV16 oncogenes in basal squamous epithelial cells. In the present study to investigate the threshold neoplastic response to exogenous estrogen, we treated groups of transgenic mice with lower hormone doses. A 5-fold reduction in estrogen dose induced squamous carcinogenesis solely at the cervical transformation zone compared with other reproductive tract sites. Further study delineated stages of transformation zone carcinogenesis, including formation of hyperplastic lower uterine glands and emergence of multiple foci of squamous metaplasia from individual stem-like glandular reserve cells, followed by neoplastic progression of metaplasia to dysplasia and squamous cancer. We propose that a combination of low-dose estrogen and low-level HPV oncogene expression biases transformation zone glandular reserve cells toward squamous rather than columnar epithelial fate decisions. Synergistic activation of proliferation by viral oncoprotein cell cycle dysregulation and estrogen receptor signaling, together with altered paracrine stromal-epithelial interactions, may conspire to support and promote neoplastic progression and cancer formation.

Loading next page...
 
/lp/american-association-of-cancer-research/sensitivity-of-the-cervical-transformation-zone-to-estrogen-induced-0lBTk8kwHO

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

Publisher
American Association of Cancer Research
Copyright
Copyright © 2000 by the American Association for Cancer Research.
ISSN
0008-5472
Publisher site

Abstract

Regions where one type of epithelium replaces another (metaplasia) have a predilection for cancer formation. Environmental factors are closely linked to metaplastic carcinogenesis. In particular, cervical cancers associated with human papillomavirus (HPV) infection develop primarily at the transformation zone, a region where metaplastic squamous cells are detected in otherwise columnar epithelial-lined endocervical glands. Previously, we reported estrogen-induced multistage vaginal and cervical carcinogenesis in transgenic mice expressing HPV16 oncogenes in basal squamous epithelial cells. In the present study to investigate the threshold neoplastic response to exogenous estrogen, we treated groups of transgenic mice with lower hormone doses. A 5-fold reduction in estrogen dose induced squamous carcinogenesis solely at the cervical transformation zone compared with other reproductive tract sites. Further study delineated stages of transformation zone carcinogenesis, including formation of hyperplastic lower uterine glands and emergence of multiple foci of squamous metaplasia from individual stem-like glandular reserve cells, followed by neoplastic progression of metaplasia to dysplasia and squamous cancer. We propose that a combination of low-dose estrogen and low-level HPV oncogene expression biases transformation zone glandular reserve cells toward squamous rather than columnar epithelial fate decisions. Synergistic activation of proliferation by viral oncoprotein cell cycle dysregulation and estrogen receptor signaling, together with altered paracrine stromal-epithelial interactions, may conspire to support and promote neoplastic progression and cancer formation.

Journal

Cancer ResearchAmerican Association of Cancer Research

Published: Mar 1, 2000

There are no references for this article.