Access the full text.
Sign up today, get DeepDyve free for 14 days.
K. Leeuwen, F. Meijer, S. Schalekamp, Matthieu Rutten, E. Dijk, B. Ginneken, T. Govers, M. Rooij (2021)
Cost-effectiveness of artificial intelligence aided vessel occlusion detection in acute stroke: an early health technology assessmentInsights into Imaging, 12
G. Albers, M. Marks, S. Kemp, S. Christensen, J. Tsai, S. Ortega‐Gutierrez, R. McTaggart, M. Torbey, M. Kim-Tenser, T. Leslie-Mazwi, A. Sarraj, S. Kasner, S. Ansari, S. Yeatts, S. Hamilton, M. Mlynash, J. Heit, G. Zaharchuk, Sun Kim, J. Carrozzella, Y. Palesch, A. Demchuk, R. Bammer, P. Lavori, J. Broderick, M. Lansberg (2018)
Thrombectomy for Stroke at 6 to 16 Hours with Selection by Perfusion ImagingThe New England Journal of Medicine, 378
Yoonyoung Park, G. Jackson, Morgan Foreman, Daniel Gruen, Jianying Hu, Amar Das (2020)
Evaluating artificial intelligence in medicine: phases of clinical researchJAMIA Open, 3
P. Omoumi, A. Ducarouge, A. Tournier, H. Harvey, C. Kahn, Fanny Verchère, D. Santos, T. Kober, J. Richiardi (2021)
To buy or not to buy—evaluating commercial AI solutions in radiology (the ECLAIR guidelines)European Radiology, 31
F. Kitamura, I. Pan, S. Ferraciolli, K. Yeom, N. Abdala (2021)
Clinical Artificial Intelligence Applications in Radiology: Neuro.Radiologic clinics of North America, 59 6
M. Willemink, Wojciech Koszek, Cailin Hardell, Jie Wu, D. Fleischmann, H. Harvey, L. Folio, R. Summers, D. Rubin, M. Lungren (2020)
Preparing Medical Imaging Data for Machine Learning.Radiology
T. Hernandez-Boussard, S. Bozkurt, J. Ioannidis, N. Shah (2020)
MINIMAR (MINimum Information for Medical AI Reporting): Developing reporting standards for artificial intelligence in health careJournal of the American Medical Informatics Association : JAMIA, 27
S. Park, Kyunghwa Han (2018)
Methodologic Guide for Evaluating Clinical Performance and Effect of Artificial Intelligence Technology for Medical Diagnosis and Prediction.Radiology, 286 3
K. Vokinger, S. Feuerriegel, A. Kesselheim (2021)
Mitigating bias in machine learning for medicineCommunications Medicine, 1
J. He, Sally Baxter, Jie Xu, Jiming Xu, Xingtao Zhou, Kang Zhang (2019)
The practical implementation of artificial intelligence technologies in medicineNature Medicine, 25
S. Goergen, H. Frazer, S. Reddy (2022)
Quality use of artificial intelligence in medical imaging: What do radiologists need to know?Journal of Medical Imaging and Radiation Oncology, 66
H. Kaka, Euan Zhang, Nazir Khan (2020)
Artificial Intelligence and Deep Learning in Neuroradiology: Exploring the New FrontierCanadian Association of Radiologists Journal, 72
K. Leeuwen, M. Rooij, S. Schalekamp, B. Ginneken, Matthieu Rutten (2021)
How does artificial intelligence in radiology improve efficiency and health outcomes?Pediatric Radiology, 52
Justus Wolff, J. Pauling, A. Keck, J. Baumbach (2021)
Success Factors of Artificial Intelligence Implementation in HealthcareFrontiers in Digital Health, 3
D. Sahlein, D. Gibson, J. Scott, A. Denardo, K. Amuluru, T. Payner, David Rosenbaum-HaLevi, C. Kulwin (2022)
Artificial intelligence aneurysm measurement tool finds growth in all aneurysms that ruptured during conservative managementJournal of NeuroInterventional Surgery, 15
Dong Kim, H. Jang, K. Kim, Youngbin Shin, S. Park (2019)
Design Characteristics of Studies Reporting the Performance of Artificial Intelligence Algorithms for Diagnostic Analysis of Medical Images: Results from Recently Published PapersKorean Journal of Radiology, 20
Abhinav Jha, T. Bradshaw, I. Buvat, M. Hatt, Prabhat Kc, Chi Liu, Nancy Obuchowski, B. Saboury, P. Slomka, J. Sunderland, R. Wahl, Zitong Yu, S. Zuehlsdorff, A. Rahmim, R. Boellaard (2022)
Nuclear Medicine and Artificial Intelligence: Best Practices for Evaluation (the RELAINCE Guidelines)The Journal of Nuclear Medicine, 63
John Mongan, L. Moy, C. Kahn (2020)
Checklist for Artificial Intelligence in Medical Imaging (CLAIM): A Guide for Authors and Reviewers.Radiology. Artificial intelligence, 2 2
Jonathan Krause, Varun Gulshan, E. Rahimy, Peter Karth, Kasumi Widner, G. Corrado, L. Peng, D. Webster (2017)
Grader variability and the importance of reference standards for evaluating machine learning models for diabetic retinopathyOphthalmology, 125 8
J. Heit, J. Honce, Vivek Yedavalli, C. Baccin, R. Tatit, K. Copeland, V. Timpone (2022)
RAPID Aneurysm: Artificial intelligence for unruptured cerebral aneurysm detection on CT angiography.Journal of stroke and cerebrovascular diseases : the official journal of National Stroke Association, 31 10
IHE radiology white paper: AI interoperability in imaging
(2020)
Machine learning and artificial intelligence research for patient benefit: 20 critical questions on transparency, replicability, ethics, and effectivenessBMJ, 369
M. Decamp, C. Lindvall (2020)
Latent bias and the implementation of artificial intelligence in medicineJournal of the American Medical Informatics Association : JAMIA
L. Létourneau-Guillon, David Camirand, F. Guilbert, R. Forghani (2020)
Artificial Intelligence Applications for Workflow, Process Optimization and Predictive Analytics.Neuroimaging clinics of North America, 30 4
G. Zaharchuk, E. Gong, M. Wintermark, D. Rubin, C. Langlotz (2018)
Deep Learning in NeuroradiologyAmerican Journal of Neuroradiology, 39
Alice Yu, B. Mohajer, J. Eng (2022)
External Validation of Deep Learning Algorithms for Radiologic Diagnosis: A Systematic Review.Radiology. Artificial intelligence, 4 3
Walter Wiggins, Kirti Magudia, Teri Schmidt, S. O'Connor, C. Carr, M. Kohli, Katherine Andriole (2021)
Imaging AI in Practice: A Demonstration of Future Workflow Using Integration Standards.Radiology. Artificial intelligence, 3 6
J. Geis, Adrian Brady, Carol Wu, Jack Spencer, Erik Ranschaert, Jacob Jaremko, Steve Langer, Andrea Kitts, J. Birch, William Shields, Robert Genderen, E. Kotter, Judy Gichoya, Tessa Cook, Matthew Morgan, A. Tang, Nabile Safdar, M. Kohli (2019)
Ethics of Artificial Intelligence in Radiology: Summary of the Joint European and North American Multisociety Statement.Radiology
A. Bohr, K. Memarzadeh (2020)
The rise of artificial intelligence in healthcare applicationsArtificial Intelligence in Healthcare
software-medical-device-samd/artificial-intelligence-andmachine-learning-aiml-enabled-medical-devices
Y. Lui, P. Chang, G. Zaharchuk, D. Barboriak, A. Flanders, Max Wintermark, C. Hess, C. Filippi (2020)
Artificial Intelligence in Neuroradiology: Current Status and Future DirectionsAmerican Journal of Neuroradiology, 41
Artificial Intelligence in Healthcare
J. Soun, D. Chow, M. Nagamine, R. Takhtawala, C. Filippi, Wengui Yu, P. Chang (2020)
Artificial Intelligence and Acute Stroke ImagingAmerican Journal of Neuroradiology, 42
S. Finlayson, Adarsh Subbaswamy, Karandeep Singh, John Bowers, Annabel Kupke, Jonathan Zittrain, I. Kohane, S. Saria (2021)
The Clinician and Dataset Shift in Artificial Intelligence.The New England journal of medicine, 385 3
J. Wilkinson, Kellyn Arnold, Eleanor Murray, M. Smeden, Kareem Carr, Rachel Sippy, Rachel Sippy, M. Kamps, Andrew Beam, S. Konigorski, C. Lippert, M. Gilthorpe, M. Gilthorpe, P. Tennant, P. Tennant (2020)
Time to reality check the promises of machine learning-powered precision medicineThe Lancet. Digital health, 2
E. Teisberg, S. Wallace, S. O'Hara (2019)
Defining and Implementing Value-Based Health Care: A Strategic FrameworkAcademic Medicine, 95
B. Campbell, P. Mitchell, T. Kleinig, H. Dewey, L. Churilov, N. Yassi, B. Yan, R. Dowling, M. Parsons, T. Oxley, Teddy Wu, M. Brooks, M. Simpson, F. Miteff, C. Levi, M. Krause, T. Harrington, K. Faulder, B. Steinfort, M. Priglinger, T. Ang, R. Scroop, P. Barber, B. McGuinness, T. Wijeratne, T. Phan, W. Chong, R. Chandra, C. Bladin, M. Badve, H. Rice, L. Villiers, Henry Ma, P. Desmond, G. Donnan, Stephen Davis (2015)
Endovascular therapy for ischemic stroke with perfusion-imaging selection.The New England journal of medicine, 372 11
Oleg Pianykh, G. Langs, M. Dewey, D. Enzmann, C. Herold, S. Schönberg, J. Brink (2020)
Continuous Learning AI in Radiology: Implementation Principles and Early Applications.Radiology
S. Ebrahimian, M. Kalra, Sheela Agarwal, B. Bizzo, M. Elkholy, C. Wald, Bibb Allen, K. Dreyer (2021)
FDA-regulated AI Algorithms: Trends, Strengths, and Gaps of Validation Studies.Academic radiology
J. Horvat (2016)
THE ETHICS OF ARTIFICIAL INTELLIGENCE
Jared Dunnmon (2021)
Separating Hope from Hype: Artificial Intelligence Pitfalls and Challenges in Radiology.Radiologic clinics of North America, 59 6
Gavin Duggan, J. Reicher, Yun Liu, Daniel Tse, S. Shetty (2021)
Improving reference standards for validation of AI-based radiographyThe British Journal of Radiology, 94
I. Scott, S. Carter, E. Coiera (2021)
Clinician checklist for assessing suitability of machine learning applications in healthcareBMJ Health & Care Informatics, 28
J. Bootman (2006)
Value in health care.Managed care interface, 19 7
D. Bluemke, L. Moy, M. Bredella, B. Ertl-Wagner, Kathryn Fowler, V. Goh, E. Halpern, Christopher Hess, M. Schiebler, C. Weiss (2019)
Assessing Radiology Research on Artificial Intelligence: A Brief Guide for Authors, Reviewers, and Readers-From the Radiology Editorial Board.Radiology
J. Kirchner, Jeffrey Smith, B. Powell, T. Waltz, E. Proctor (2020)
Getting a clinical innovation into practice: An introduction to implementation strategiesPsychiatry Research, 283
Henry Ma, B. Campbell, M. Parsons, L. Churilov, C. Levi, C. Hsu, T. Kleinig, T. Wijeratne, Sami Curtze, H. Dewey, F. Miteff, C. Tsai, Jiunn‐Tay Lee, T. Phan, N. Mahant, Mu-Chien Sun, M. Krause, J. Sturm, R. Grimley, Chih‐Hung Chen, Chaur-Jong Hu, A. Wong, D. Field, Yu Sun, P. Barber, A. Sabet, J. Jannes, J. Jeng, B. Clissold, R. Markus, Ching‐Huang Lin, L. Lien, C. Bladin, S. Christensen, N. Yassi, G. Sharma, A. Bivard, P. Desmond, B. Yan, P. Mitchell, V. Thijs, L. Carey, A. Meretoja, S. Davis, G. Donnan (2019)
Thrombolysis Guided by Perfusion Imaging up to 9 Hours after Onset of StrokeThe New England Journal of Medicine, 380
Ross Filice, John Mongan, M. Kohli (2020)
Evaluating Artificial Intelligence Systems to Guide Purchasing Decisions.Journal of the American College of Radiology : JACR
(2010)
What is value in health care?New England Journal of Medicine, 363
Xiaoxuan Liu, B. Glocker, M. McCradden, M. Ghassemi, A. Denniston, Lauren Oakden-Rayner (2022)
The medical algorithmic audit.The Lancet. Digital health
Alice Yu, J. Eng (2020)
One Algorithm May Not Fit All: How Selection Bias Affects Machine Learning Performance.Radiographics : a review publication of the Radiological Society of North America, Inc
D. Plana, D. Shung, A. Grimshaw, A. Saraf, J. Sung, B. Kann (2022)
Randomized Clinical Trials of Machine Learning Interventions in Health CareJAMA Network Open, 5
European Radiology (2021)
Value-based radiology: what is the ESR doing, and what should we do in the future?Insights into Imaging, 12
P. Burns, Rod Rohrich, K. Chung (2011)
The Levels of Evidence and Their Role in Evidence-Based MedicinePlastic and Reconstructive Surgery, 128
S. Rivera, Xiaoxuan Liu, A. Chan, A. Denniston, M. Calvert (2020)
Guidelines for clinical trial protocols for interventions involving artificial intelligence: the SPIRIT-AI extensionNature Medicine, 26
Christopher Kelly, A. Karthikesalingam, Mustafa Suleyman, Greg Corrado, Dominic King (2019)
Key challenges for delivering clinical impact with artificial intelligenceBMC Medicine, 17
K. Leeuwen, S. Schalekamp, Matthieu Rutten, B. Ginneken, M. Rooij (2021)
Artificial intelligence in radiology: 100 commercially available products and their scientific evidenceEuropean Radiology, 31
A. Jha, T. Bradshaw, I. Buvat
Best practices for evaluation of artificial intelligence-based algorithms for nuclear medicine: the RELIANCE guidelinesJ Nucl Med, 63
B. Spilseth, C. McKnight, Matthew Li, Christian Park, Jessica Fried, P. Yi, J. Brian, C. Lehman, Xiaoqin Wang, Vaishali Phalke, M. Pakkal, D. Baruah, P. Khine, Laurie Fajardo (2021)
AUR-RRA Review: Logistics of Academic-Industry Partnerships in Artificial Intelligence.Academic radiology
SUMMARY: Clinical adoption of an artificial intelligence–enabled imaging tool requires critical appraisal of its life cycle from development to implementation by using a systematic, standardized, and objective approach that can verify both its technical and clinical efficacy. Toward this concerted effort, the ASFNR/ASNR Artificial Intelligence Workshop Technology Working Group is proposing a hierarchal evaluation system based on the quality, type, and amount of scientific evidence that the artificial intelligence–enabled tool can demonstrate for each component of its life cycle. The current proposal is modeled after the levels of evidence in medicine, with the uppermost level of the hierarchy showing the strongest evidence for potential impact on patient care and health care outcomes. The intended goal of establishing an evidence-based evaluation system is to encourage transparency, foster an understanding of the creation of artificial intelligence tools and the artificial intelligence decision-making process, and to report the relevant data on the efficacy of artificial intelligence tools that are developed. The proposed system is an essential step in working toward a more formalized, clinically validated, and regulated framework for the safe and effective deployment of artificial intelligence imaging applications that will be used in clinical practice.
American Journal of Neuroradiology – American Journal of Neuroradiology
Published: May 1, 2023
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.