Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

A 30-Year Climatology of Northeastern U.S. Atmospheric Rivers

A 30-Year Climatology of Northeastern U.S. Atmospheric Rivers AbstractAtmospheric rivers (ARs) are a frequently studied phenomenon along the West Coast of the United States, where they are typically associated with the heaviest local flooding events and almost one-half of the annual precipitation totals. By contrast, ARs in the northeastern United States have received considerably less attention. The purpose of this study is to utilize a unique visual inspection methodology to create a 30-yr (1988–2017) climatology of ARs in the northeastern United States. Consistent with its formal definition, ARs are defined as corridors with integrated vapor transport (IVT) values greater than 250 kg m−1 s−1 over an area at least 2000 km long but less than 1000 km wide in association with an extratropical cyclone. Using MERRA2 reanalysis data, this AR definition is used to determine the frequency, duration, and spatial distribution of ARs across the northeastern United States. Approximately 100 ARs occur in the northeastern United States per year, with these ARs being quasi-uniformly distributed throughout the year. On average, northeastern U.S. ARs have a peak IVT magnitude between 750 and 999 kg m−1 s−1, last less than 48 h, and arrive in the region from the west to southwest. Average AR durations are longer in summer and shorter in winter. Further, ARs are typically associated with lower IVT in winter and higher IVT in summer. Spatially, ARs more frequently occur over the Atlantic Ocean coastline and adjacent Gulf Stream waters; however, the frequency with which large IVT values are associated with ARs is highest over interior New England. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Applied Meteorology and Climatology American Meteorological Society

Loading next page...
 
/lp/american-meteorological-society/a-30-year-climatology-of-northeastern-u-s-atmospheric-rivers-HUJsgVuwBW
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1558-8432
eISSN
1558-8432
DOI
10.1175/jamc-d-21-0253.1
Publisher site
See Article on Publisher Site

Abstract

AbstractAtmospheric rivers (ARs) are a frequently studied phenomenon along the West Coast of the United States, where they are typically associated with the heaviest local flooding events and almost one-half of the annual precipitation totals. By contrast, ARs in the northeastern United States have received considerably less attention. The purpose of this study is to utilize a unique visual inspection methodology to create a 30-yr (1988–2017) climatology of ARs in the northeastern United States. Consistent with its formal definition, ARs are defined as corridors with integrated vapor transport (IVT) values greater than 250 kg m−1 s−1 over an area at least 2000 km long but less than 1000 km wide in association with an extratropical cyclone. Using MERRA2 reanalysis data, this AR definition is used to determine the frequency, duration, and spatial distribution of ARs across the northeastern United States. Approximately 100 ARs occur in the northeastern United States per year, with these ARs being quasi-uniformly distributed throughout the year. On average, northeastern U.S. ARs have a peak IVT magnitude between 750 and 999 kg m−1 s−1, last less than 48 h, and arrive in the region from the west to southwest. Average AR durations are longer in summer and shorter in winter. Further, ARs are typically associated with lower IVT in winter and higher IVT in summer. Spatially, ARs more frequently occur over the Atlantic Ocean coastline and adjacent Gulf Stream waters; however, the frequency with which large IVT values are associated with ARs is highest over interior New England.

Journal

Journal of Applied Meteorology and ClimatologyAmerican Meteorological Society

Published: Jan 11, 2023

References