Get 20M+ Full-Text Papers For Less Than $1.50/day. Subscribe now for You or Your Team.

Learn More →

Isolation of Geobacter species from diverse sedimentary environments.

Isolation of Geobacter species from diverse sedimentary environments. Isolation of Geobacter species from diverse sedimentary environments. J D Coates , E J Phillips , D J Lonergan , H Jenter and D R Lovley Water Resources Division, U.S. Geological Survey, Reston, Virginia 22092, USA. ABSTRACT In an attempt to better understand the microorganisms responsible for Fe(III) reduction in sedimentary environments, Fe(III)-reducing microorganisms were enriched for and isolated from freshwater aquatic sediments, a pristine deep aquifer, and a petroleum-contaminated shallow aquifer. Enrichments were initiated with acetate or toluene as the electron donor and Fe(III) as the electron acceptor. Isolations were made with acetate or benzoate. Five new strains which could obtain energy for growth by dissimilatory Fe(III) reduction were isolated. All five isolates are gram-negative strict anaerobes which grow with acetate as the electron donor and Fe(III) as the electron acceptor. Analysis of the 16S rRNA sequence of the isolated organisms demonstrated that they all belonged to the genus Geobacter in the delta subdivision of the Proteobacteria. Unlike the type strain, Geobacter metallireducens, three of the five isolates could use H2 as an electron donor for Fe(III) reduction. The deep subsurface isolate is the first Fe(III) reducer shown to completely oxidize lactate to carbon dioxide, while one of the freshwater sediment isolates is only the second Fe(III) reducer known that can oxidize toluene. The isolation of these organisms demonstrates that Geobacter species are widely distributed in a diversity of sedimentary environments in which Fe(III) reduction is an important process. CiteULike Connotea Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter What's this? « Previous | Next Article » Table of Contents This Article Appl. Environ. Microbiol. May 1996 vol. 62 no. 5 1531-1536 » Abstract PDF Services Email this article to a colleague Similar articles in ASM journals Alert me when this article is cited Alert me if a correction is posted Similar articles in this journal Similar articles in Web of Science Similar articles in PubMed Alert me to new issues of AEM Download to citation manager Reprints and Permissions Copyright Information Books from ASM Press MicrobeWorld Citing Articles Load citing article information Citing articles via Web of Science Citing articles via Google Scholar Google Scholar Articles by Coates, J. D. Articles by Lovley, D. R. Search for related content PubMed PubMed citation Articles by Coates, J. D. Articles by Lovley, D. R. Related Content Load related web page information Social Bookmarking CiteULike Connotea Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter What's this? current issue December 2011, volume 77, issue 23 Alert me to new issues of AEM About AEM Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy AEM RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 0099-2240 Online ISSN: 1098-5336 Copyright © 2011 by the American Society for Microbiology. For an alternate route to AEM .asm.org, visit: http://intl- AEM .asm.org | More Info» var gaJsHost = (("https:" == document.location.protocol) ? "https://ssl." : "http://www."); document.write(unescape("%3Cscript src='" + gaJsHost + "google-analytics.com/ga.js' type='text/javascript'%3E%3C/script%3E")); var pageTracker = _gat._getTracker("UA-5821458-4"); pageTracker._trackPageview(); http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied and Environmental Microbiology American Society For Microbiology

Isolation of Geobacter species from diverse sedimentary environments.

Isolation of Geobacter species from diverse sedimentary environments.

Applied and Environmental Microbiology , Volume 62 (5): 1531 – May 1, 1996

Abstract

Isolation of Geobacter species from diverse sedimentary environments. J D Coates , E J Phillips , D J Lonergan , H Jenter and D R Lovley Water Resources Division, U.S. Geological Survey, Reston, Virginia 22092, USA. ABSTRACT In an attempt to better understand the microorganisms responsible for Fe(III) reduction in sedimentary environments, Fe(III)-reducing microorganisms were enriched for and isolated from freshwater aquatic sediments, a pristine deep aquifer, and a petroleum-contaminated shallow aquifer. Enrichments were initiated with acetate or toluene as the electron donor and Fe(III) as the electron acceptor. Isolations were made with acetate or benzoate. Five new strains which could obtain energy for growth by dissimilatory Fe(III) reduction were isolated. All five isolates are gram-negative strict anaerobes which grow with acetate as the electron donor and Fe(III) as the electron acceptor. Analysis of the 16S rRNA sequence of the isolated organisms demonstrated that they all belonged to the genus Geobacter in the delta subdivision of the Proteobacteria. Unlike the type strain, Geobacter metallireducens, three of the five isolates could use H2 as an electron donor for Fe(III) reduction. The deep subsurface isolate is the first Fe(III) reducer shown to completely oxidize lactate to carbon dioxide, while one of the freshwater sediment isolates is only the second Fe(III) reducer known that can oxidize toluene. The isolation of these organisms demonstrates that Geobacter species are widely distributed in a diversity of sedimentary environments in which Fe(III) reduction is an important process. CiteULike Connotea Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter What's this? « Previous | Next Article » Table of Contents This Article Appl. Environ. Microbiol. May 1996 vol. 62 no. 5 1531-1536 » Abstract PDF Services Email this article to a colleague Similar articles in ASM journals Alert me when this article is cited Alert me if a correction is posted Similar articles in this journal Similar articles in Web of Science Similar articles in PubMed Alert me to new issues of AEM Download to citation manager Reprints and Permissions Copyright Information Books from ASM Press MicrobeWorld Citing Articles Load citing article information Citing articles via Web of Science Citing articles via Google Scholar Google Scholar Articles by Coates, J. D. Articles by Lovley, D. R. Search for related content PubMed PubMed citation Articles by Coates, J. D. Articles by Lovley, D. R. Related Content Load related web page information Social Bookmarking CiteULike Connotea Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter What's this? current issue December 2011, volume 77, issue 23 Alert me to new issues of AEM About AEM Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy AEM RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 0099-2240 Online ISSN: 1098-5336 Copyright © 2011 by the American Society for Microbiology. For an alternate route to AEM .asm.org, visit: http://intl- AEM .asm.org | More Info» var gaJsHost = (("https:" == document.location.protocol) ? "https://ssl." : "http://www."); document.write(unescape("%3Cscript src='" + gaJsHost + "google-analytics.com/ga.js' type='text/javascript'%3E%3C/script%3E")); var pageTracker = _gat._getTracker("UA-5821458-4"); pageTracker._trackPageview();

Loading next page...
 
/lp/american-society-for-microbiology/isolation-of-geobacter-species-from-diverse-sedimentary-environments-f4d43I30k4

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

Publisher
American Society For Microbiology
Copyright
Copyright © 1996 by the American society for Microbiology.
ISSN
0099-2240
eISSN
1098-5336
Publisher site
See Article on Publisher Site

Abstract

Isolation of Geobacter species from diverse sedimentary environments. J D Coates , E J Phillips , D J Lonergan , H Jenter and D R Lovley Water Resources Division, U.S. Geological Survey, Reston, Virginia 22092, USA. ABSTRACT In an attempt to better understand the microorganisms responsible for Fe(III) reduction in sedimentary environments, Fe(III)-reducing microorganisms were enriched for and isolated from freshwater aquatic sediments, a pristine deep aquifer, and a petroleum-contaminated shallow aquifer. Enrichments were initiated with acetate or toluene as the electron donor and Fe(III) as the electron acceptor. Isolations were made with acetate or benzoate. Five new strains which could obtain energy for growth by dissimilatory Fe(III) reduction were isolated. All five isolates are gram-negative strict anaerobes which grow with acetate as the electron donor and Fe(III) as the electron acceptor. Analysis of the 16S rRNA sequence of the isolated organisms demonstrated that they all belonged to the genus Geobacter in the delta subdivision of the Proteobacteria. Unlike the type strain, Geobacter metallireducens, three of the five isolates could use H2 as an electron donor for Fe(III) reduction. The deep subsurface isolate is the first Fe(III) reducer shown to completely oxidize lactate to carbon dioxide, while one of the freshwater sediment isolates is only the second Fe(III) reducer known that can oxidize toluene. The isolation of these organisms demonstrates that Geobacter species are widely distributed in a diversity of sedimentary environments in which Fe(III) reduction is an important process. CiteULike Connotea Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter What's this? « Previous | Next Article » Table of Contents This Article Appl. Environ. Microbiol. May 1996 vol. 62 no. 5 1531-1536 » Abstract PDF Services Email this article to a colleague Similar articles in ASM journals Alert me when this article is cited Alert me if a correction is posted Similar articles in this journal Similar articles in Web of Science Similar articles in PubMed Alert me to new issues of AEM Download to citation manager Reprints and Permissions Copyright Information Books from ASM Press MicrobeWorld Citing Articles Load citing article information Citing articles via Web of Science Citing articles via Google Scholar Google Scholar Articles by Coates, J. D. Articles by Lovley, D. R. Search for related content PubMed PubMed citation Articles by Coates, J. D. Articles by Lovley, D. R. Related Content Load related web page information Social Bookmarking CiteULike Connotea Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter What's this? current issue December 2011, volume 77, issue 23 Alert me to new issues of AEM About AEM Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy AEM RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 0099-2240 Online ISSN: 1098-5336 Copyright © 2011 by the American Society for Microbiology. For an alternate route to AEM .asm.org, visit: http://intl- AEM .asm.org | More Info» var gaJsHost = (("https:" == document.location.protocol) ? "https://ssl." : "http://www."); document.write(unescape("%3Cscript src='" + gaJsHost + "google-analytics.com/ga.js' type='text/javascript'%3E%3C/script%3E")); var pageTracker = _gat._getTracker("UA-5821458-4"); pageTracker._trackPageview();

Journal

Applied and Environmental MicrobiologyAmerican Society For Microbiology

Published: May 1, 1996

There are no references for this article.