Access the full text.
Sign up today, get DeepDyve free for 14 days.
Bacterial infections remain a major public health concern. However, broad-spectrum antibiotics largely target redundant mechanisms of bacterial survival and lead to gained resistance owing to microbial evolution. New methods are needed to attack bacterial infections, and we have only begun to seek out nature's vast arsenal of antimicrobial weapons. Enzymes offer one such weapon, and their diversity has been exploited to kill bacteria selectively through unique targets, particularly in bacterial cell walls, as well as nonselectively through generation of bactericidal molecules. In both approaches, microbial resistance has largely been absent, which bodes well for its potential use in human therapeutics. Furthermore, enzyme stabilization through conjugation to nanoscale materials and incorporation into polymeric composites enable their use on surfaces to endow them with antimicrobial properties. Here, we highlight the use of enzymes as antimicrobial agents, including applications that may prove effective in new therapeutics and through control of key societal infrastructures.
Annual Review of Chemical and Biomolecular Engineering – Annual Reviews
Published: Jun 7, 2017
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.