Access the full text.
Sign up today, get DeepDyve free for 14 days.
References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.
▪ Abstract One of the major goals in therapeutic immunosuppression has been to achieve long-term benefit from short-term therapy. The discovery in the mid-1980s that CD4 antibodies can induce immunological tolerance without depleting CD4 + T cells has reawakened interest in the use of nondepleting monoclonal antibodies for reprogramming the immune system in autoimmunity and in transplantation. Since that time, antibodies to CD11a, CD4OL, CD25, CD3, and CTLA4-Ig have all been shown capable of facilitating tolerance. In order to apply the principle of reprogramming in the clinic, we have sought to understand the mechanisms that are involved in its induction and its maintenance. In a number of allogeneic transplant models (heart, skin, bone marrow) anti-CD4 (± CD8) antibodies can be shown to block the rejection process while selectively promoting the development of CD4 + regulatory T cells responsible for a dominant tolerance that is reflected in findings of linked suppression and infectious tolerance. In these models, T cells that have never been exposed to CD4 antibodies become tolerant to grafted antigens by experiencing antigen in the microenvironment of regulatory T cells. Dominant tolerance is not the only mechanism that can be facilitated by CD4 Mab therapy. If allogeneic marrow is given at high cell doses under the umbrella of CD4 and CD8 antibodies, then tolerance can be achieved through clonal deletion. The mechanism by which regulatory CD4 + T cells suppress is not yet defined but could be active or passive. We have proposed the “civil service model” to explain how tolerant T cells might interfere with the responses of competent T cells in such a way as to render them tolerant. The application of dominant infectious tolerance and linked suppression to clinical immunosuppression should not be underestimated because it suggests that tolerance acquired (through therapy) to a limited set of antigens can spread to embrace all others in the tissues under attack.
Annual Review of Immunology – Annual Reviews
Published: Apr 1, 1998
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.