Access the full text.
Sign up today, get DeepDyve free for 14 days.
A large body of evidence suggests the existence of polarized human T cell responses, reminiscent of Th1 and Th2 subsets described for mouse T cells. Human Th1-like cells preferentially develop during infections by intracellular bacteria, protozoa, and viruses, whereas Th2-like cells predominate during helminthic infestations and in response to common environmental allergens. The cytokine profile of “natural immunity” evoked by different offending agents in the context of different host genetic backgrounds appears to be a critical factor in determining the phenotype of the subsequent specific response. Strongly polarized human Th1-type and Th2-type responses not only play different roles in protection, they can also promote different immunopathological reactions. Th1-type responses appear to be involved in organ specific autoimmunity, in contact dermatitis, and in some chronic inflammatory disorders of unknown etiology. In contrast, in genetically predisposed hosts, Th2-type responses against common environmental allergens are responsible for triggering of allergic atopic disorders. Altered profiles of lymphokine production may account for immune dysfunctions in some primary or acquired immunodeficiency syndromes. The role of lymphokines produced by T cells in the pathogenesis of systemic autoimmune disorders is less clear. Further work is also required to better clarify the role of T cell-derived lymphokines in protecting against tumors or in favoring their development.
Annual Review of Immunology – Annual Reviews
Published: Apr 1, 1994
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.