Access the full text.
Sign up today, get DeepDyve free for 14 days.
We review the molecular principles underlying the homogeneous nucleation of a crystal phase from the melt phase, as elucidated by molecular simulation methods. Classical nucleation theory serves as the starting point for describing the nature of nucleation processes, but it does not derive from molecular principles itself. Density functional theory and molecular simulations offer tools for delving into the molecular origins of nucleation. Here, we emphasize the rapid development of molecular simulation methodologies for studying crystal nucleation from the melt. These methodologies are broadly categorized as free energy sampling methods, dynamical or mean first-passage time methods, and composite approaches that take advantage of both. The crucial selection of order parameters to distinguish the crystal phase from the liquid phase and important features of the reaction coordinate are emphasized. The system size dependence of the nucleation free energy barrier is also examined.
Annual Review of Chemical and Biomolecular Engineering – Annual Reviews
Published: Jul 15, 2012
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.