Access the full text.
Sign up today, get DeepDyve free for 14 days.
It is well recognized that nanocomposites formed by adding nanoparticles to polymers can have significantly enhanced properties relative to the native polymer. This review focuses on three aspects that are central to the outstanding problem of realizing these promised property improvements. First, we ask if there exist general strategies to control nanoparticle spatial distribution. This is an important question because it is commonly accepted that the nanoparticle dispersion state crucially affects property improvements. Because ideas on macroscale composites suggest that optimizing different properties requires different dispersion states, we next ask if we can predict a priori the particle dispersion and organization state that can optimize one (or more) properties of the resulting nanocomposite. Finally, we examine the role that particle shape plays in affecting dispersion and hence property control. This review focuses on recent advances concerning these underpinning points and how they affect measurable properties relevant to engineering applications.
Annual Review of Chemical and Biomolecular Engineering – Annual Reviews
Published: Jul 15, 2010
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.