Access the full text.
Sign up today, get DeepDyve free for 14 days.
References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.
Variations in protein phosphorylation provide the predominant means of enzymatic regulation now known in biological systems, especially in the regulation of signal transduction from cell surface receptors. Analysis of these signaling pathways has proceeded especially rapidly in lymphocytes, in part because these cells can be isolated with relative ease and can in many cases be maintained in vitro for prolonged periods as clonal populations. During the past few years, both biochemical and genetic evidence has been adduced indicating that the antigen receptors of T and B lymphocytes associate functionally with nonreceptor protein tyrosine kinases. Similar data implicate protein tyrosine kinases in signaling from the CD4 and CD8 coreceptors and the f3 chain of the IL-2 receptor. Protein serine/threonine kinases and several different phosphatases also participate in the intracellular propagation of antigen receptor-derived signals. Here we review the lymphocyte surface receptors that are believed to act by altering protein phosphorylation, the kinases and phosphatases that are believed to regulate signal transduction in lymphocytes, and the implications of these results for the broader study of cell signaling mech amsms. 45 1 0732-0582/93/04 1 0-045 1 $02.00 PERLMUTTER ET AL INTRODUCTION Lymphocyte surface receptors transmit signals to the cell interior that
Annual Review of Immunology – Annual Reviews
Published: Apr 1, 1993
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.