Access the full text.
Sign up today, get DeepDyve free for 14 days.
Abstract Bone remodeling by bone-forming osteoblasts and bone-resorbing osteoclasts dynamically alters the bone inner wall and the endosteum region, which harbors osteoblastic niches for hematopoietic stem cells. Investigators have recently elucidated mechanisms of recruitment and mobilization; these mechanisms consist of stress signals that drive migration of leukocytes and progenitor cells from the bone marrow reservoir to the circulation and drive their homing to injured tissues as part of host defense and repair. The physical bone marrow vasculature barrier that is crossed by mobilized cells actively transmits chemotactic signals between the blood and the bone marrow, facilitating organ communication and cell trafficking. Osteoclasts play a dual role in regulation of bone resorption and homeostatic release or stress-induced mobilization of hematopoietic stem/progenitor cells. In this review, we discuss the orchestrated interplay between bone remodeling, the immune system, and the endosteal stem cell niches in the context of stem cell proliferation and migration during homeostasis, which are accelerated during alarm situations.
Annual Review of Immunology – Annual Reviews
Published: Apr 23, 2007
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.