Access the full text.
Sign up today, get DeepDyve free for 14 days.
Motivated by governmental, commercial and academic interests, and due to the growing amount of information, mainly online, automatic text summarization area has experienced an increasing number of researches and products, which led to a countless number of summarization methods. In this paper, we present a comprehensive comparative evaluation of the main automatic text summarization methods based on Rhetorical Structure Theory (RST), claimed to be among the best ones. We compare our results to superficial summarizers, which belong to a paradigm with severe limitations, and to hybrid methods, combining RST and superficial methods. We also test voting systems and machine learning techniques trained on RST features. We run experiments for English and Brazilian Portuguese languages and compare the results obtained by using manually and automatically parsed texts. Our results systematically show that all RST methods have comparable overall performance and that they outperform most of the superficial methods. Machine learning techniques achieved high accuracy in the classification of text segments worth of being in the summary, but were not able to produce more informative summaries than the regular RST methods.
ACM Transactions on Speech and Language Processing (TSLP) – Association for Computing Machinery
Published: May 1, 2010
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.