Access the full text.
Sign up today, get DeepDyve free for 14 days.
Medical image annotation aims to automatically describe the content of medical images. It helps doctors to understand the content of medical images and make better informed decisions like diagnoses. Existing methods mainly follow the approach for natural images and fail to emphasize the object abnormalities, which is the essence of medical images annotation. In light of this, we propose to transform the medical image annotation to a multi-label classification problem, where object abnormalities are focused directly. However, extant multi-label classification studies rely on arduous feature engineering, or do not solve label correlation issues well in medical images. To solve these problems, we propose a novel deep learning model where a frequent pattern mining component and an adversarial-based denoising autoencoder component are introduced. Extensive experiments are conducted on a real retinal image dataset to evaluate the performance of the proposed model. Results indicate that the proposed model significantly outperforms image captioning baselines and multi-label classification baselines.
ACM Transactions on Management Information Systems (TMIS) – Association for Computing Machinery
Published: Jan 25, 2023
Keywords: Deep learning
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.