Get 20M+ Full-Text Papers For Less Than $1.50/day. Subscribe now for You or Your Team.

Learn More →

A Survey on Causal Inference

A Survey on Causal Inference Causal inference is a critical research topic across many domains, such as statistics, computer science, education, public policy, and economics, for decades. Nowadays, estimating causal effect from observational data has become an appealing research direction owing to the large amount of available data and low budget requirement, compared with randomized controlled trials. Embraced with the rapidly developed machine learning area, various causal effect estimation methods for observational data have sprung up. In this survey, we provide a comprehensive review of causal inference methods under the potential outcome framework, one of the well-known causal inference frameworks. The methods are divided into two categories depending on whether they require all three assumptions of the potential outcome framework or not. For each category, both the traditional statistical methods and the recent machine learning enhanced methods are discussed and compared. The plausible applications of these methods are also presented, including the applications in advertising, recommendation, medicine, and so on. Moreover, the commonly used benchmark datasets as well as the open-source codes are also summarized, which facilitate researchers and practitioners to explore, evaluate and apply the causal inference methods. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png ACM Transactions on Knowledge Discovery from Data (TKDD) Association for Computing Machinery

Loading next page...
 
/lp/association-for-computing-machinery/a-survey-on-causal-inference-DtDEIar1Ai

References (213)

Publisher
Association for Computing Machinery
Copyright
Copyright © 2021 ACM
ISSN
1556-4681
eISSN
1556-472X
DOI
10.1145/3444944
Publisher site
See Article on Publisher Site

Abstract

Causal inference is a critical research topic across many domains, such as statistics, computer science, education, public policy, and economics, for decades. Nowadays, estimating causal effect from observational data has become an appealing research direction owing to the large amount of available data and low budget requirement, compared with randomized controlled trials. Embraced with the rapidly developed machine learning area, various causal effect estimation methods for observational data have sprung up. In this survey, we provide a comprehensive review of causal inference methods under the potential outcome framework, one of the well-known causal inference frameworks. The methods are divided into two categories depending on whether they require all three assumptions of the potential outcome framework or not. For each category, both the traditional statistical methods and the recent machine learning enhanced methods are discussed and compared. The plausible applications of these methods are also presented, including the applications in advertising, recommendation, medicine, and so on. Moreover, the commonly used benchmark datasets as well as the open-source codes are also summarized, which facilitate researchers and practitioners to explore, evaluate and apply the causal inference methods.

Journal

ACM Transactions on Knowledge Discovery from Data (TKDD)Association for Computing Machinery

Published: May 10, 2021

Keywords: Treatment effect estimation; Representation learning

There are no references for this article.