Access the full text.
Sign up today, get DeepDyve free for 14 days.
Signal machines form an abstract and idealized model of collision computing. Based on dimensionless signals moving on the real line, they model particle/signal dynamics in Cellular Automata. Each particle, or signal, moves at constant speed in continuous time and space. When signals meet, they get replaced by other signals. A signal machine defines the types of available signals, their speeds, and the rules for replacement in collision. A signal machine A simulates another one B if all the space-time diagrams of B can be generated from space-time diagrams of A by removing some signals and renaming other signals according to local information. Given any finite set of speeds S we construct a signal machine that is able to simulate any signal machine whose speeds belong to S. Each signal is simulated by a macro-signal, a ray of parallel signals. Each macro-signal has a main signal located exactly where the simulated signal would be, as well as auxiliary signals that encode its id and the collision rules of the simulated machine. The simulation of a collision, a macro-collision, consists of two phases. In the first phase, macro-signals are shrunk, and then the macro-signals involved in the collision are identified and it is ensured that no other macro-signal comes too close. If some do, the process is aborted and the macro-signals are shrunk, so that the correct macro-collision will eventually be restarted and successfully initiated. Otherwise, the second phase starts: the appropriate collision rule is found and new macro-signals are generated accordingly. Considering all finite sets of speeds S and their corresponding simulators provides an intrinsically universal family of signal machines.
ACM Transactions on Computation Theory (TOCT) – Association for Computing Machinery
Published: Feb 10, 2021
Keywords: Abstract geometrical computation
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.