Access the full text.
Sign up today, get DeepDyve free for 14 days.
We prove that for every distribution D on n bits with Shannon entropy n a, at most O(2da logd+1g)/5 of the bits Di can be predicted with advantage by an AC0 circuit of size g and depth D that is a function of all of the bits of D except Di. This answers a question by Meir and Wigderson, who proved a corresponding result for decision trees. We also show that there are distributions D with entropy n O(1) such that any subset of O(n/ log n) bits of D on can be distinguished from uniform by a circuit of depth 2 and size poly(n). This separates the notions of predictability and distinguishability in this context.
ACM Transactions on Computation Theory (TOCT) – Association for Computing Machinery
Published: Mar 17, 2021
Keywords: AC0
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.