Access the full text.
Sign up today, get DeepDyve free for 14 days.
We highlight recent progress in worst-case analysis of welfare in first price auctions. It was shown in [Syrgkanis and Tardos 2013] that in any Bayes-Nash equilibrium of a first-price auction, the expected social welfare is at least a (1 - 1/e) .63-fraction of optimal. This result uses smoothness, the standard technique for worst-case welfare analysis of games, and is tight if bidders' value distributions are permitted to be correlated. With independent distributions, however, the worst-known example, due to [Hartline et al. 2014], exhibits welfare that is a .89-fraction of optimal. This gap has persisted in spite of the canonical nature of the first-price auction and the prevalence of the independence assumption. In [Hoy et al. 2018], we improve the worst-case lower bound on first-price auction welfare assuming independently distributed values from (1 - 1/e) to .743. Notably, the proof of this result eschews smoothness in favor of techniques which exploit independence. This note overviews the new approach, and discusses research directions opened up by the result.
ACM SIGecom Exchanges – Association for Computing Machinery
Published: May 7, 2019
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.