Access the full text.
Sign up today, get DeepDyve free for 14 days.
Capacity- and Energy-Aware Activation of Sensor Nodes for Area Phenomenon Reproduction Using Wireless Network Transport XIAOLONG HUANG and IZHAK RUBIN, University of California, Los Angeles We consider a sensor network involving sensors placed in specific locations. An area phenomenon is detected and tracked by activated sensors. The area phenomenon is modeled to consist of K spatially distributed point phenomena. The activated sensors collect data samples characterizing the parameters of the involved point phenomena. They compress observed data readings and transport them to a processing center. The center processes the received data to derive estimates of the point phenomena's parameters. Our sensing stochastic process models account for distance-dependent observation noise perturbations as well as noise correlations. At the processing center, sample mean calculations are used to derive the estimates of the underlying area phenomenon's parameters. We develop computationally efficient algorithms to determine the specific set of sensors for activation under capacity and energy resource constraints so that a sufficiently low reproduction distortion level is attained. We derive lower bounds on the realizable levels of the distortion measure. Using illustrative cases, we demonstrate one of our algorithms to yield distortion levels that are very close to the lower bound, while
ACM Transactions on Sensor Networks (TOSN) – Association for Computing Machinery
Published: Jul 1, 2013
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.