Access the full text.
Sign up today, get DeepDyve free for 14 days.
Cognitive Canonicalization of Natural Language Queries Using Semantic Strata SUMAN DEB ROY and WENJUN ZENG, University of Missouri Natural language search relies strongly on perceiving semantics in a query sentence. Semantics is captured by the relationship among the query words, represented as a network (graph). Such a network of words can be fed into larger ontologies, like DBpedia or Google Knowledge Graph, where they appear as subgraphs-- fashioning the name subnetworks (subnets). Thus, subnet is a canonical form for interfacing a natural language query to a graph database and is an integral step for graph-based searching. In this article, we present a novel standalone NLP technique that leverages the cognitive psychology notion of semantic strata for semantic subnetwork extraction from natural language queries. The cognitive model describes some of the fundamental structures employed by the human cognition to construct semantic information in the brain, called semantic strata. We propose a computational model based on conditional random fields to capture the cognitive abstraction provided by semantic strata, facilitating cognitive canonicalization of the query. Our results, conducted on approximately 5000 queries, suggest that the cognitive canonicals based on semantic strata are capable of significantly improving parsing and role labeling performance
ACM Transactions on Speech and Language Processing (TSLP) – Association for Computing Machinery
Published: Dec 1, 2013
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.