Access the full text.
Sign up today, get DeepDyve free for 14 days.
Coverage Estimation for Crowded Targets in Visual Sensor Networks MAHMUT KARAKAYA and HAIRONG QI, University of Tennessee Coverage estimation is one of the fundamental problems in sensor networks. Coverage estimation in visual sensor networks (VSNs) is more challenging than in conventional 1-D (omnidirectional) scalar sensor networks (SSNs) because of the directional sensing nature of cameras and the existence of visual occlusion in crowded environments. This article represents a first attempt toward a closed-form solution for the visual coverage estimation problem in the presence of occlusions. We investigate a new target detection model, referred to as the certainty-based target detection (as compared to the traditional uncertainty-based target detection) to facilitate the formulation of the visual coverage problem. We then derive the closed-form solution for the estimation of the visual coverage probability based on this new target detection model that takes visual occlusions into account. According to the coverage estimation model, we further propose an estimate of the minimum sensor density that suffices to ensure a visual K-coverage in a crowded sensing field. Simulation is conducted which shows extreme consistency with results from theoretical formulation, especially when the boundary effect is considered. Thus, the closed-form solution for visual coverage estimation
ACM Transactions on Sensor Networks (TOSN) – Association for Computing Machinery
Published: Jul 1, 2012
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.