Access the full text.
Sign up today, get DeepDyve free for 14 days.
Graph neural networks, a powerful deep learning tool to model graph-structured data, have demonstrated remarkable performance on numerous graph learning tasks. To address the data noise and data scarcity issues in deep graph learning, the research on graph data augmentation has intensified lately. However, conventional data augmentation methods can hardly handle graph-structured data which is defined in non-Euclidean space with multi-modality. In this survey, we formally formulate the problem of graph data augmentation and further review the representative techniques and their applications in different deep graph learning problems. Specifically, we first propose a taxonomy for graph data augmentation techniques and then provide a structured review by categorizing the related work based on the augmented information modalities. Moreover, we summarize the applications of graph data augmentation in two representative problems in data-centric deep graph learning: (1) reliable graph learning which focuses on enhancing the utility of input graph as well as the model capacity via graph data augmentation; and (2) low-resource graph learning which targets on enlarging the labeled training data scale through graph data augmentation. For each problem, we also provide a hierarchical problem taxonomy and review the existing literature related to graph data augmentation. Finally, we point out promising research directions and the challenges in future research.
ACM SIGKDD Explorations Newsletter – Association for Computing Machinery
Published: Dec 5, 2022
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.