Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Deep Learning at Scale and at Ease

Deep Learning at Scale and at Ease Recently, deep learning techniques have enjoyed success in various multimedia applications, such as image classification and multimodal data analysis. Large deep learning models are developed for learning rich representations of complex data. There are two challenges to overcome before deep learning can be widely adopted in multimedia and other applications. One is usability, namely the implementation of different models and training algorithms must be done by nonexperts without much effort, especially when the model is large and complex. The other is scalability, namely the deep learning system must be able to provision for a huge demand of computing resources for training large models with massive datasets. To address these two challenges, in this article we design a distributed deep learning platform called SINGA, which has an intuitive programming model based on the common layer abstraction of deep learning models. Good scalability is achieved through flexible distributed training architecture and specific optimization techniques. SINGA runs on both GPUs and CPUs, and we show that it outperforms many other state-of-the-art deep learning systems. Our experience with developing and training deep learning models for real-life multimedia applications in SINGA shows that the platform is both usable and scalable. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM) Association for Computing Machinery

Loading next page...
 
/lp/association-for-computing-machinery/deep-learning-at-scale-and-at-ease-y8MoYbVwYw
Publisher
Association for Computing Machinery
Copyright
Copyright © 2016 Owner/Author
ISSN
1551-6857
eISSN
1551-6865
DOI
10.1145/2996464
Publisher site
See Article on Publisher Site

Abstract

Recently, deep learning techniques have enjoyed success in various multimedia applications, such as image classification and multimodal data analysis. Large deep learning models are developed for learning rich representations of complex data. There are two challenges to overcome before deep learning can be widely adopted in multimedia and other applications. One is usability, namely the implementation of different models and training algorithms must be done by nonexperts without much effort, especially when the model is large and complex. The other is scalability, namely the deep learning system must be able to provision for a huge demand of computing resources for training large models with massive datasets. To address these two challenges, in this article we design a distributed deep learning platform called SINGA, which has an intuitive programming model based on the common layer abstraction of deep learning models. Good scalability is achieved through flexible distributed training architecture and specific optimization techniques. SINGA runs on both GPUs and CPUs, and we show that it outperforms many other state-of-the-art deep learning systems. Our experience with developing and training deep learning models for real-life multimedia applications in SINGA shows that the platform is both usable and scalable.

Journal

ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM)Association for Computing Machinery

Published: Nov 2, 2016

Keywords: Multimedia

References