Access the full text.
Sign up today, get DeepDyve free for 14 days.
Content-based image retrieval (CBIR) is one of the most important applications of computer vision. In recent years, there have been many important advances in the development of CBIR systems, especially Convolutional Neural Networks (CNNs) and other deep-learning techniques. On the other hand, current CNN-based CBIR systems suffer from high computational complexity of CNNs. This problem becomes more severe as mobile applications become more and more popular. The current practice is to deploy the entire CBIR systems on the server side while the client side only serves as an image provider. This architecture can increase the computational burden on the server side, which needs to process thousands of requests per second. Moreover, sending images have the potential of personal information leakage. As the need of mobile search expands, concerns about privacy are growing. In this article, we propose a fast image search framework, named DeepSearch, which makes complex image search based on CNNs feasible on mobile phones. To implement the huge computation of CNN models, we present a tensor Block Term Decomposition (BTD) approach as well as a nonlinear response reconstruction method to accelerate the CNNs involving in object detection and feature extraction. The extensive experiments on the ImageNet dataset and Alibaba Large-scale Image Search Challenge dataset show that the proposed accelerating approach BTD can significantly speed up the CNN models and further makes CNN-based image search practical on common smart phones.
ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM) – Association for Computing Machinery
Published: Dec 13, 2017
Keywords: Convolutional neural networks
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.