Access the full text.
Sign up today, get DeepDyve free for 14 days.
Discovering Matrix Attachment Regions (MARs) in Genomic Databases Gautam B. Singh Department of Computer Science & Engineering Oakland University Rochester, MI 48309 singh @ oakland.edu ABSTRACT Lately, there has been considerable interest in applying Data Mining techniques to scientific and data analysis problems in bioinformatics. Data mining research is being fueled by novel application areas that are helping the development of newer applied algorithms in the field of bioinformatics, an emerging discipline representing the integration of biological and information sciences. This is a shift in paradigm from the earlier and the continuing data mining efforts in marketing research and support for business intelligence. The problem described in this paper is along a new dimension in DNA sequence analysis research and supplements the previously studied stochastic models for evolution and variability. The discovery of now~l patterns from genetic databases as described is quite significant because biological pattern play an important role in a large variety of cellular processes and constitute the basis for gene therapy. Biological databases containing the genetic codes from a wide variety of organisms, including humans, have continued their exponential growth over the last decade. At the time of this writing, the GenBank database contains over
ACM SIGKDD Explorations Newsletter – Association for Computing Machinery
Published: Jan 1, 2000
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.