Access the full text.
Sign up today, get DeepDyve free for 14 days.
We present a distributed algorithm for node localization based on the Gauss-Newton method. In this algorithm, each node updates its own location estimate using the pairwise distance measurements and the local information it receives from the neighboring nodes. Once the location estimate is updated, the sensor node broadcasts the updated estimate to all the neighboring nodes. A distributed and scalable local scheduling algorithm for updating nodes in the network is presented to avoid the use of the global coordinator or a routing loop. We analytically show that the proposed distributed algorithm converges under certain practical assumptions of the network. The performance of the algorithm is evaluated using both simulation and experimental results. Quantitative comparisons among different distributed algorithms are also presented.
ACM Transactions on Sensor Networks (TOSN) – Association for Computing Machinery
Published: Dec 1, 2009
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.