Access the full text.
Sign up today, get DeepDyve free for 14 days.
Target tracking is a typical and important cooperative sensing application of wireless sensor networks. We study it in its most basic form, assuming a binary sensing model in which each sensor returns only 1-bit information regarding target's presence or absence within its sensing range. A novel, real-time and distributed target tracking algorithm is introduced. The algorithm is energy efficient and fault tolerant. It estimates the target location, velocity, and trajectory in a distributed and asynchronous manner. The accuracy of the algorithm is analytically derived under an ideal binary sensing model and extensive simulations of ideal, imperfect, and faulty sensing models show that the algorithm achieves good performance. It outperforms other published algorithms by yielding highly accurate estimates of the target's location, velocity, and trajectory.
ACM Transactions on Sensor Networks (TOSN) – Association for Computing Machinery
Published: Jul 1, 2010
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.