Access the full text.
Sign up today, get DeepDyve free for 14 days.
We present a new methodology for proving distribution testing lower bounds, establishing a connection between distribution testing and the simultaneous message passing (SMP) communication model. Extending the framework of Blais, Brody, and Matulef [15], we show a simple way to reduce (private-coin) SMP problems to distribution testing problems. This method allows us to prove new distribution testing lower bounds, as well as to provide simple proofs of known lower bounds. Our main result is concerned with testing identity to a specific distribution, p, given as a parameter. In a recent and influential work, Valiant and Valiant [55] showed that the sample complexity of the aforementioned problem is closely related to the 2/3-quasinorm of p. We obtain alternative bounds on the complexity of this problem in terms of an arguably more intuitive measure and using simpler proofs. More specifically, we prove that the sample complexity is essentially determined by a fundamental operator in the theory of interpolation of Banach spaces, known as Peetre’s K-functional. We show that this quantity is closely related to the size of the effective support of p (loosely speaking, the number of supported elements that constitute the vast majority of the mass of p). This result, in turn, stems from an unexpected connection to functional analysis and refined concentration of measure inequalities, which arise naturally in our reduction.
ACM Transactions on Computation Theory (TOCT) – Association for Computing Machinery
Published: Feb 11, 2019
Keywords: Communication complexity
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.