Access the full text.
Sign up today, get DeepDyve free for 14 days.
Effective Transfer Tagging from Image to Video YANG YANG, The University of Queensland YI YANG, Carnegie Mellon University HENG TAO SHEN, The University of Queensland Recent years have witnessed a great explosion of user-generated videos on the Web. In order to achieve an effective and efficient video search, it is critical for modern video search engines to associate videos with semantic keywords automatically. Most of the existing video tagging methods can hardly achieve reliable performance due to deficiency of training data. It is noticed that abundant well-tagged data are available in other relevant types of media (e.g., images). In this article, we propose a novel video tagging framework, termed as Cross-Media Tag Transfer (CMTT), which utilizes the abundance of well-tagged images to facilitate video tagging. Specifically, we build a "cross-media tunnel" to transfer knowledge from images to videos. To this end, an optimal kernel space, in which distribution distance between images and video is minimized, is found to tackle the domainshift problem. A novel cross-media video tagging model is proposed to infer tags by exploring the intrinsic local structures of both labeled and unlabeled data, and learn reliable video classifiers. An efficient algorithm is designed to optimize the
ACM Transactions on Multimedia Computing, Communications, and Applications (TOMCCAP) – Association for Computing Machinery
Published: May 1, 2013
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.