Access the full text.
Sign up today, get DeepDyve free for 14 days.
References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.
Distance metric learning has been widely studied in multifarious research fields. The mainstream approaches learn a Mahalanobis metric or learn a linear transformation. Recent related works propose learning a linear combination of base vectors to approximate the metric. In this way, fewer variables need to be determined, which is efficient when facing high-dimensional data. Nevertheless, such works obtain base vectors using additional data from related domains or randomly generate base vectors. However, obtaining base vectors from related domains requires extra time and additional data, and random vectors introduce randomness into the learning process, which requires sufficient random vectors to ensure the stability of the algorithm. Moreover, the random vectors cannot capture the rich information of the training data, leading to a degradation in performance. Considering these drawbacks, we propose a novel distance metric learning approach by introducing base vectors explicitly learned from training data. Given a specific task, we can make a sparse approximation of its objective function using the top eigenvalues and corresponding eigenvectors of a predefined integral operator on the reproducing kernel Hilbert space. Because the process of generating eigenvectors simply refers to the training data of the considered task, our proposed method does not require additional data and can reflect the intrinsic information of the input features. Furthermore, the explicitly learned eigenvectors do not result in randomness, and we can extend our method to any kernel space without changing the objective function. We only need to learn the coefficients of these eigenvectors, and the only hyperparameter that we need to determine is the number of eigenvectors that we utilize. Additionally, an optimization algorithm is proposed to efficiently solve this problem. Extensive experiments conducted on several datasets demonstrate the effectiveness of our proposed method.
ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM) – Association for Computing Machinery
Published: Aug 20, 2019
Keywords: Distance metric learning
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.