Access the full text.
Sign up today, get DeepDyve free for 14 days.
Imperceptibility and robustness are two complementary fundamental requirements of any watermarking algorithm. Low-strength watermarking yields high imperceptibility, but exhibits poor robustness. High-strength watermarking schemes achieve good robustness but often infuse distortions resulting in poor visual quality in host images. This article analyses the embedding distortion for wavelet-based watermarking schemes. We derive the relationship between distortion, measured in mean square error (MSE), and the watermark embedding modification and propose the linear proportionality between MSE and the sum of energy of the selected wavelet coefficients for watermark embedding modification. The initial proposition assumes the orthonormality of discrete wavelet transform. It is further extended for non-orthonormal wavelet kernels using a weighting parameter that follows the energy conservation theorems in wavelet frames. The proposed analysis is verified by experimental results for both non-blind and blind watermarking schemes. Such a model is useful to find the optimum input parameters, including the wavelet kernel, coefficient selection, and subband choices for wavelet domain image watermarking.
ACM Transactions on Multimedia Computing Communications and Applications (TOMCCAP) – Association for Computing Machinery
Published: Dec 16, 2019
Keywords: MSE
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.