Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Emotion Recognition Using Multiple Kernel Learning toward E-learning Applications

Emotion Recognition Using Multiple Kernel Learning toward E-learning Applications Adaptive Educational Hypermedia (AEH) e-learning models aim to personalize educational content and learning resources based on the needs of an individual learner. The Adaptive Hypermedia Architecture (AHA) is a specific implementation of the AEH model that exploits the cognitive characteristics of learner feedback to adapt resources accordingly. However, beside cognitive feedback, the learning realm generally includes both the affective and emotional feedback of the learner, which is often neglected in the design of e-learning models. This article aims to explore the potential of utilizing affect or emotion recognition research in AEH models. The framework is referred to as Multiple Kernel Learning Decision Tree Weighted Kernel Alignment (MKLDT-WFA). The MKLDT-WFA has two merits over classical MKL. First, the WFA component only preserves the relevant kernel weights to reduce redundancy and improve the discrimination for emotion classes. Second, training via the decision tree reduces the misclassification issues associated with the SimpleMKL. The proposed work has been evaluated on different emotion datasets and the results confirm the good performances. Finally, the conceptual Emotion-based E-learning Model (EEM) with the proposed emotion recognition framework is proposed for future work. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM) Association for Computing Machinery

Emotion Recognition Using Multiple Kernel Learning toward E-learning Applications

Loading next page...
 
/lp/association-for-computing-machinery/emotion-recognition-using-multiple-kernel-learning-toward-e-learning-sj4PsTOuZR
Publisher
Association for Computing Machinery
Copyright
Copyright © 2018 ACM
ISSN
1551-6857
eISSN
1551-6865
DOI
10.1145/3131287
Publisher site
See Article on Publisher Site

Abstract

Adaptive Educational Hypermedia (AEH) e-learning models aim to personalize educational content and learning resources based on the needs of an individual learner. The Adaptive Hypermedia Architecture (AHA) is a specific implementation of the AEH model that exploits the cognitive characteristics of learner feedback to adapt resources accordingly. However, beside cognitive feedback, the learning realm generally includes both the affective and emotional feedback of the learner, which is often neglected in the design of e-learning models. This article aims to explore the potential of utilizing affect or emotion recognition research in AEH models. The framework is referred to as Multiple Kernel Learning Decision Tree Weighted Kernel Alignment (MKLDT-WFA). The MKLDT-WFA has two merits over classical MKL. First, the WFA component only preserves the relevant kernel weights to reduce redundancy and improve the discrimination for emotion classes. Second, training via the decision tree reduces the misclassification issues associated with the SimpleMKL. The proposed work has been evaluated on different emotion datasets and the results confirm the good performances. Finally, the conceptual Emotion-based E-learning Model (EEM) with the proposed emotion recognition framework is proposed for future work.

Journal

ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM)Association for Computing Machinery

Published: Jan 4, 2018

Keywords: E-learning

References