Access the full text.
Sign up today, get DeepDyve free for 14 days.
We continue developing the information theory of structured data. In this article, we study models generating d-ary trees (d 2) and trees with unrestricted degree. We first compute the entropy which gives us the fundamental lower bound on compression of such trees. Then we present efficient compression algorithms based on arithmetic encoding that achieve the entropy within a constant number of bits. A naïve implementation of these algorithms has a prohibitive time complexity of O(nd) elementary arithmetic operations (each corresponding to a number f(n, d) of bit operations), but our efficient algorithms run in O(n2) of these operations, where n is the number of nodes. It turns out that extending source coding (i.e., compression) from sequences to advanced data structures such as degree-unconstrained trees is mathematically quite challenging and leads to recurrences that find ample applications in the information theory of general structures (e.g., to analyze the information content of degree-unconstrained non-plane trees).
ACM Transactions on Algorithms (TALG) – Association for Computing Machinery
Published: Oct 1, 2018
Keywords: Arithmetic coding
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.