Access the full text.
Sign up today, get DeepDyve free for 14 days.
References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.
Evolvability of Real Functions PAUL VALIANT, Brown University We formulate a notion of evolvability for functions with domain and range that are real-valued vectors, a compelling way of expressing many natural biological processes. We show that linear and fixed-degree polynomial functions are evolvable in the following dually-robust sense: There is a single evolution algorithm that, for all convex loss functions, converges for all distributions. It is possible that such dually-robust results can be achieved by simpler and more-natural evolution algorithms. Towards this end, we introduce a simple and natural algorithm that we call wide-scale random noise and prove a corresponding result for the L2 metric. We conjecture that the algorithm works for a more general class of metrics. Categories and Subject Descriptors: F.1.1 [Computation by Abstract Devices]: Models of Computation--Self-modifying machines; G.1.6 [Numerical Analysis]: Optimization--Convex programming; I.2.6 [Artificial Intelligence]: Learning--Concept learning; J.3 [Computer Applications]: Life and Medical Sciences--Biology and genetics General Terms: Algorithms, Theory Additional Key Words and Phrases: Evolvability, optimization ACM Reference Format: Valiant, P. 2014. Evolvability of real functions. ACM Trans. Comput. Theory 6, 3, Article 12 (July 2014), 19 pages. DOI:http://dx.doi.org/10.1145/2633598 1. INTRODUCTION Since Darwin first assembled the empirical facts that pointed to evolution as
ACM Transactions on Computation Theory (TOCT) – Association for Computing Machinery
Published: Jul 1, 2014
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.