Access the full text.
Sign up today, get DeepDyve free for 14 days.
We consider the problem of detecting the formation of a set of wireless sensor nodes based on the pairwise measurements of signal strength corresponding to all transmitter/receiver pairs. We assume that formations take values in a discrete set and develop a composite hypothesis testing approach which uses a Generalized Likelihood Test (GLT) as the decision rule. The GLT distinguishes between a set of probability density function (pdf) families constructed using a custom pdf interpolation technique. The GLT is compared with the simple Likelihood Test (LT). We also adapt one prevalent supervised learning approach, Multiple Support Vector Machines (MSVMs), and compare it with our probabilistic methods. Due to the highly variant measurements from the wireless sensor nodes, and these methods' different adaptability to multiple observations, our analysis and experimental results suggest that GLT is more accurate and suitable for formation detection. The formation detection problem has interesting applications in posture detection with Wireless Body Area Networks (WBANs), which is extremely useful in health monitoring and rehabilitation. Another valuable application we explore concerns autonomous robot systems.
ACM Transactions on Sensor Networks (TOSN) – Association for Computing Machinery
Published: Jun 1, 2014
Keywords: Wireless sensor networks
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.