Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

From Annotation to Computer-Aided Diagnosis

From Annotation to Computer-Aided Diagnosis Holistic medical multimedia systems covering end-to-end functionality from data collection to aided diagnosis are highly needed, but rare. In many hospitals, the potential value of multimedia data collected through routine examinations is not recognized. Moreover, the availability of the data is limited, as the health care personnel may not have direct access to stored data. However, medical specialists interact with multimedia content daily through their everyday work and have an increasing interest in finding ways to use it to facilitate their work processes. In this article, we present a novel, holistic multimedia system aiming to tackle automatic analysis of video from gastrointestinal (GI) endoscopy. The proposed system comprises the whole pipeline, including data collection, processing, analysis, and visualization. It combines filters using machine learning, image recognition, and extraction of global and local image features. The novelty is primarily in this holistic approach and its real-time performance, where we automate a complete algorithmic GI screening process. We built the system in a modular way to make it easily extendable to analyze various abnormalities, and we made it efficient in order to run in real time. The conducted experimental evaluation proves that the detection and localization accuracy are comparable or even better than existing systems, but it is by far leading in terms of real-time performance and efficient resource consumption. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM) Association for Computing Machinery

Loading next page...
 
/lp/association-for-computing-machinery/from-annotation-to-computer-aided-diagnosis-0qPSu9Isfy

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

Publisher
Association for Computing Machinery
Copyright
Copyright © 2017 ACM
ISSN
1551-6857
eISSN
1551-6865
DOI
10.1145/3079765
Publisher site
See Article on Publisher Site

Abstract

Holistic medical multimedia systems covering end-to-end functionality from data collection to aided diagnosis are highly needed, but rare. In many hospitals, the potential value of multimedia data collected through routine examinations is not recognized. Moreover, the availability of the data is limited, as the health care personnel may not have direct access to stored data. However, medical specialists interact with multimedia content daily through their everyday work and have an increasing interest in finding ways to use it to facilitate their work processes. In this article, we present a novel, holistic multimedia system aiming to tackle automatic analysis of video from gastrointestinal (GI) endoscopy. The proposed system comprises the whole pipeline, including data collection, processing, analysis, and visualization. It combines filters using machine learning, image recognition, and extraction of global and local image features. The novelty is primarily in this holistic approach and its real-time performance, where we automate a complete algorithmic GI screening process. We built the system in a modular way to make it easily extendable to analyze various abnormalities, and we made it efficient in order to run in real time. The conducted experimental evaluation proves that the detection and localization accuracy are comparable or even better than existing systems, but it is by far leading in terms of real-time performance and efficient resource consumption.

Journal

ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM)Association for Computing Machinery

Published: May 31, 2017

Keywords: Medical multimedia system

References