Access the full text.
Sign up today, get DeepDyve free for 14 days.
Joeseph Selby, G. Friedman, C. Quesenberry, N. Weiss (1992)
A case-control study of screening sigmoidoscopy and mortality from colorectal cancer.The New England journal of medicine, 326 10
Baopu Li, M. Meng (2012)
Tumor Recognition in Wireless Capsule Endoscopy Images Using Textural Features and SVM-Based Feature SelectionIEEE Transactions on Information Technology in Biomedicine, 16
D. Specht (1990)
Probabilistic neural networksNeural Networks, 3
Zeno Albisser, M. Riegler, P. Halvorsen, Jiang Zhou, C. Griwodz, I. Balasingham, C. Gurrin (2015)
Expert driven semi-supervised elucidation tool for medical endoscopic videosProceedings of the 6th ACM Multimedia Systems Conference
I. Dinov (2018)
Deep Learning, Neural Networks
M. Lux, M. Riegler (2013)
Annotation of endoscopic videos on mobile devices: a bottom-up approach
J. Hardcastle (1993)
Colorectal cancerCA: A Cancer Journal for Clinicians, 47
A. Mamonov, I. Figueiredo, P. Figueiredo, Y. Tsai (2013)
Automated Polyp Detection in Colon Capsule EndoscopyIEEE Transactions on Medical Imaging, 33
Shuai Wang, Yang Cong, Huijie Fan, Lianqing Liu, Xiaoqiu Li, Yunsheng Yang, Yandong Tang, Huaici Zhao, Haibin Yu (2016)
Computer-Aided Endoscopic Diagnosis Without Human-Specific LabelingIEEE Transactions on Biomedical Engineering, 63
Joseph Redmon, S. Divvala, Ross Girshick, Ali Farhadi (2015)
You Only Look Once: Unified, Real-Time Object Detection2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
Ruwan Nawarathna, Jung-Hwan Oh, Jayantha Muthukudage, Wallapak Tavanapong, J. Wong, P. Groen, Shou-Jiang Tang (2014)
Abnormal image detection in endoscopy videos using a filter bank and local binary patternsNeurocomputing, 144
T. Semertzidis, Dimitrios Rafailidis, Eleftherios Tiakas, M. Strintzis, P. Daras (2013)
Multimedia Indexing, Search, and Retrieval in Large Databases of Social Networks
A. Vries, S. Bipat, E. Dekker, M. Liedenbaum, J. Florie, P. Fockens, R. Kraan, E. Mathus-Vliegen, J. Reitsma, R. Truyen, F. Vos, A. Zwinderman, J. Stoker (2009)
Polyp measurement based on CT colonography and colonoscopy: variability and systematic differencesEuropean Radiology, 20
Martín Abadi, P. Barham, Jianmin Chen, Z. Chen, Andy Davis, J. Dean, Matthieu Devin, S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, Sherry Moore, D. Murray, Benoit Steiner, P. Tucker, Vijay Vasudevan, P. Warden, M. Wicke, Yuan Yu, Xiaoqiang Zhang (2016)
TensorFlow: A system for large-scale machine learning
Nima Tajbakhsh, S. Gurudu, Jianming Liang (2015)
Automatic polyp detection in colonoscopy videos using an ensemble of convolutional neural networks2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI)
Cees Snoek, M. Worring, A. Smeulders (2005)
Early versus late fusion in semantic video analysisProceedings of the 13th annual ACM international conference on Multimedia
A. Khaleghi, I. Balasingham (2015)
Wireless communication link for capsule endoscope at 600 MHz2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
Yi Wang, Wallapak Tavanapong, J. Wong, Jung-Hwan Oh, P. Groen (2011)
Computer-aided detection of retroflexion in colonoscopy2011 24th International Symposium on Computer-Based Medical Systems (CBMS)
J. Ferlay, E. Steliarova-Foucher, J. Lortet-Tieulent, S. Rosso, J. Coebergh, H. Comber, D. Forman, F. Bray (2013)
Cancer incidence and mortality patterns in Europe: estimates for 40 countries in 2012.European journal of cancer, 49 6
Thomas Lange, S. Larsen, L. Aabakken (2005)
Image documentation of endoscopic findings in ulcerative colitis: photographs or video clips?Gastrointestinal endoscopy, 61 6
S. McGuire (2016)
World Cancer Report 2014. Geneva, Switzerland: World Health Organization, International Agency for Research on Cancer, WHO Press, 2015.Advances in nutrition, 7 2
Sungheon Park, Myunggi Lee, Nojun Kwak (2015)
Polyp detection in Colonoscopy Videos Using Deeply-Learned Hierarchical Features
B. Giritharan, Xiaohui Yuan, Jianguo Liu, B. Buckles, Junghwan Oh, Shou Tang (2008)
Bleeding detection from capsule endoscopy videos2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
Xirong Li, Cees Snoek, M. Worring (2010)
Unsupervised multi-feature tag relevance learning for social image retrieval
M. Kaminski, J. Reguła, E. Kraszewska, M. Pólkowski, U. Wojciechowska, J. Didkowska, M. Zwierko, M. Rupinski, M. Nowacki, E. Butruk (2010)
Quality indicators for colonoscopy and the risk of interval cancer.The New England journal of medicine, 362 19
A. Fitzgibbon, Robert Fisher (1995)
A Buyer's Guide to Conic Fitting
Nima Tajbakhsh, S. Gurudu, Jianming Liang (2016)
Automated Polyp Detection in Colonoscopy Videos Using Shape and Context InformationIEEE Transactions on Medical Imaging, 35
M. Lux (2013)
LIRE: open source image retrieval in JavaProceedings of the 21st ACM international conference on Multimedia
Konstantin Pogorelov, S. Eskeland, T. Lange, C. Griwodz, K. Randel, H. Stensland, D. Dang-Nguyen, C. Spampinato, Dag Johansen, M. Riegler, P. Halvorsen (2017)
A Holistic Multimedia System for Gastrointestinal Tract Disease DetectionProceedings of the 8th ACM on Multimedia Systems Conference
H. Inoue, H. Kashida, S. Kudo, M. Sasako, T. Shimoda, Hisashi Watanabe, S. Yoshida, M. Guelrud, C. Lightdale, Kenneth Wang, R. Riddell, Diébold, R. Lambert, J. Rey, M. Jung, H. Neuhaus, A. Axon, R. Genta, J. Gonvers (2003)
The Paris endoscopic classification of superficial neoplastic lesions: esophagus, stomach, and colon: November 30 to December 1, 2002.Gastrointestinal endoscopy, 58 6 Suppl
S. Ameling, S. Wirth, D. Paulus, G. Lacey, F. Vilariño (2009)
Texture-Based Polyp Detection in Colonoscopy
M. Riegler, Konstantin Pogorelov, P. Halvorsen, T. Lange, C. Griwodz, P. Schmidt, S. Eskeland, Dag Johansen (2016)
EIR — Efficient computer aided diagnosis framework for gastrointestinal endoscopies2016 14th International Workshop on Content-Based Multimedia Indexing (CBMI)
L. Karsa, J. Patnick, N. Segnan (2012)
European guidelines for quality assurance in colorectal cancer screening and diagnosis. First Edition – Executive summaryEndoscopy, 44
Sae Hwang, Jung-Hwan Oh, Wallapak Tavanapong, J. Wong, P. Groen (2007)
Polyp Detection in Colonoscopy Video using Elliptical Shape Feature2007 IEEE International Conference on Image Processing, 2
Ø. Holme, M. Bretthauer, A. Fretheim, J. Odgaard-Jensen, G. Hoff (2013)
Flexible sigmoidoscopy versus faecal occult blood testing for colorectal cancer screening in asymptomatic individuals.The Cochrane database of systematic reviews, 9
Yi Wang, Wallapak Tavanapong, J. Wong, Jung-Hwan Oh, P. Groen (2015)
Polyp-Alert: Near real-time feedback during colonoscopyComputer methods and programs in biomedicine, 120 3
Yi Wang, Wallapak Tavanapong, J. Wong, Jung-Hwan Oh, P. Groen (2013)
Near Real-Time Retroflexion Detection in ColonoscopyIEEE Journal of Biomedical and Health Informatics, 17
Kyosuke Tanaka, C. Rubio, A. Dlugosz, Kotryna Truskaite, R. Befrits, G. Lindberg, P. Schmidt (2013)
Narrow-band imaging magnifying endoscopy in adult patients with eosinophilic esophagitis/esophageal eosinophilia and lymphocytic esophagitis.Gastrointestinal endoscopy, 78 4
B. Efron, R. Tibshirani (1997)
Improvements on Cross-Validation: The 632+ Bootstrap MethodJournal of the American Statistical Association, 92
A. Buades, B. Coll, J. Morel (2011)
Non-Local Means DenoisingImage Process. Line, 1
J. Higginson (1968)
International Agency for Research on Cancer.WHO chronicle, 22 12
Dayong Wang, A. Khosla, Rishab Gargeya, H. Irshad, Andrew Beck (2016)
Deep Learning for Identifying Metastatic Breast CancerArXiv, abs/1606.05718
S. Kudo, S. Hirota, T. Nakajima, S. Hosobe, H. Kusaka, T. Kobayashi, M. Himori, A. Yagyuu (1994)
Colorectal tumours and pit pattern.Journal of Clinical Pathology, 47
Danyu Liu, Yu Cao, Kihwan Kim, Sean Stanek, Bancha Doungratanaex-Chai, Kungen Lin, Wallapak Tavanapong, J. Wong, Jung-Hwan Oh, P. Groen (2007)
Arthemis: Annotation software in an integrated capturing and analysis system for colonoscopyComputer methods and programs in biomedicine, 88 2
Nadia Hashem (2013)
I" and "others
Jingkuan Song (2013)
Effective hashing for large-scale multimedia search
F. Ciompi, Kaman Chung, S. Riel, A. Setio, P. Gerke, C. Jacobs, E. Scholten, C. Schaefer-Prokop, M. Wille, A. Marchiano, U. Pastorino, M. Prokop, B. Ginneken (2016)
Towards automatic pulmonary nodule management in lung cancer screening with deep learningScientific Reports, 7
Yi Wang, Wallapak Tavanapong, J. Wong, Jung-Hwan Oh, P. Groen (2014)
Part-Based Multiderivative Edge Cross-Sectional Profiles for Polyp Detection in ColonoscopyIEEE Journal of Biomedical and Health Informatics, 18
M. Riegler, M. Lux, V. Charvillat, A. Carlier, Raynor Vliegendhart, M. Larson (2014)
VideoJot: A Multifunctional Video Annotation ToolProceedings of International Conference on Multimedia Retrieval
S. Oba, S. Tanaka, Y. Sano, S. Oka, K. Chayama (2011)
Current Status of Narrow-Band Imaging Magnifying Colonoscopy for Colorectal Neoplasia in JapanDigestion, 83
Apache LuceneIndex File Formats
M. Riegler, M. Lux, C. Griwodz, C. Spampinato, Thomas Lange, S. Eskeland, Konstantin Pogorelov, Wallapak Tavanapong, P. Schmidt, C. Gurrin, Dag Johansen, H. Johansen, P. Halvorsen (2016)
Multimedia and Medicine: Teammates for Better Disease Detection and SurvivalProceedings of the 24th ACM international conference on Multimedia
Menglin Jiang, Shaoting Zhang, Hongsheng Li, Dimitris Metaxas (2015)
Computer-Aided Diagnosis of Mammographic Masses Using Scalable Image RetrievalIEEE Transactions on Biomedical Engineering, 62
M. Riegler, M. Larson, M. Lux, Christoph Kofler (2014)
How 'How' Reflects What's What: Content-based Exploitation of How Users Frame Social ImagesProceedings of the 22nd ACM international conference on Multimedia
Yang Cong, Shuai Wang, Ji Liu, Jun Cao, Yunsheng Yang, Jiebo Luo (2015)
Deep sparse feature selection for computer aided endoscopy diagnosisPattern Recognit., 48
Yi Wang, Wallapak Tavanapong, J. Wong, Jung-Hwan Oh, P. Groen (2010)
Detection of Quality Visualization of Appendiceal Orifices Using Local Edge Cross-Section Profile Features and Near Pause DetectionIEEE Transactions on Biomedical Engineering, 57
Anh Nguyen, J. Yosinski, J. Clune (2014)
Deep neural networks are easily fooled: High confidence predictions for unrecognizable images2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
J. Schmidhuber (2014)
Deep learning in neural networks: An overviewNeural networks : the official journal of the International Neural Network Society, 61
(2013)
The $2.7 Trillion Medical Bill
D. Knuth (1973)
The art of computer programming: sorting and searching (volume 3)
J. Austoker, L. Giordano, P. Hewitson, P. Villain (2012)
European guidelines for quality assurance in colorectal cancer screening and diagnosis. First Edition – CommunicationEndoscopy, 44
H. Escalante, Carlos Hernández, L. Sucar, M. Montes-y-Gómez (2008)
Late fusion of heterogeneous methods for multimedia image retrieval
S. Mallery, J. Dam (2000)
Advances in diagnostic and therapeutic endoscopy.The Medical clinics of North America, 84 5
Christine Chin, David Brown (2000)
Learning in Science: A Comparison of Deep and Surface Approaches.Journal of Research in Science Teaching, 37
D. Knuth (1998)
The Art of Computer Programming: Volume 3: Sorting and Searching
Baopu Li, M. Meng (2009)
Computer-based detection of bleeding and ulcer in wireless capsule endoscopy images by chromaticity momentsComputers in biology and medicine, 39 2
D. Cheng, W. Ting, Yung-fu Chen, Q. Pu, Xiaoyi Jiang (2008)
Colorectal Polyps Detection Using Texture Features and Support Vector Machine
Luís Alexandre, João Casteleiro, Nuno Nobreinst (2007)
Polyp Detection in Endoscopic Video Using SVMs
J. Kang, R. Doraiswami (2003)
Real-time image processing system for endoscopic applicationsCCECE 2003 - Canadian Conference on Electrical and Computer Engineering. Toward a Caring and Humane Technology (Cat. No.03CH37436), 3
Mingda Zhou, G. Bao, Y. Geng, B. Alkandari, Xiaoxi Li (2014)
Polyp detection and radius measurement in small intestine using video capsule endoscopy2014 7th International Conference on Biomedical Engineering and Informatics
From Annotation to Computer-Aided Diagnosis: Detailed Evaluation of a Medical Multimedia System MICHAEL RIEGLER and KONSTANTIN POGORELOV, Simula Research Laboratory and University of Oslo SIGRUN LOSADA ESKELAND, Bærum Hospital, Vestre Viken Hospital Trust PETER THELIN SCHMIDT, Karolinska Institutet, Department of Medicine, Solna and Karolinska University Hospital, Center for Digestive Diseases, Stockholm ZENO ALBISSER, Simula Research Laboratory and University of Oslo DAG JOHANSEN, UiT - The Arctic University of Norway CARSTEN GRIWODZ and PÅL HALVORSEN, Simula Research Laboratory and University of Oslo THOMAS DE LANGE, Bærum Hospital, Vestre Viken Hospital Trust and Cancer Registry of Norway Holistic medical multimedia systems covering end-to-end functionality from data collection to aided diagnosis are highly needed, but rare. In many hospitals, the potential value of multimedia data collected through routine examinations is not recognized. Moreover, the availability of the data is limited, as the health care personnel may not have direct access to stored data. However, medical specialists interact with multimedia content daily through their everyday work and have an increasing interest in finding ways to use it to facilitate their work processes. In this article, we present a novel, holistic multimedia system aiming to tackle automatic analysis of video from gastrointestinal (GI)
ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM) – Association for Computing Machinery
Published: May 31, 2017
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.