Access the full text.
Sign up today, get DeepDyve free for 14 days.
We give lower bounds on the complexity of the word problem for a large class of non-solvable infinite groups that we call strongly efficiently non-solvable groups. This class includes free groups, Grigorchuk’s group, and Thompson’s groups. We prove that these groups have an NC1-hard word problem and that for some of them (including Grigorchuk’s group and Thompson’s groups) the compressed word problem (which is equivalent to the circuit evaluation problem) is PSPACE-complete.
ACM Transactions on Computation Theory (TOCT) – Association for Computing Machinery
Published: Feb 1, 2023
Keywords: NC1-hardness
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.