Access the full text.
Sign up today, get DeepDyve free for 14 days.
Hierarchical Spatial Gossip for Multiresolution Representations in Sensor Networks RIK SARKAR, XIANJIN ZHU, and JIE GAO, Stony Brook University In this article we propose a lightweight algorithm for constructing multiresolution data representations for sensor networks. At each sensor node u, we compute O(log n) aggregates about exponentially enlarging neighborhoods centered at u. The ith aggregate is the aggregated data from nodes approximately within 2i hops of u. We present a scheme, named the hierarchical spatial gossip algorithm, to extract and construct these aggregates, for all sensors simultaneously, with a total communication cost of O(n polylog n). The hierarchical gossip algorithm adopts atomic communication steps with each node choosing to exchange information with a node distance d away with probability ¼ 1/d3 . The attractiveness of the algorithm can be attributed to its simplicity, low communication cost, distributed nature, and robustness to node failures and link failures. We show in addition that computing multiresolution aggregates precisely (i.e., each aggregate uses all and only the nodes within 2i hops) requires a communication cost of (n n), which does not scale well with network size. An approximate range in aggregate computation like that introduced by the gossip mechanism is therefore
ACM Transactions on Sensor Networks (TOSN) – Association for Computing Machinery
Published: Aug 1, 2011
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.