Access the full text.
Sign up today, get DeepDyve free for 14 days.
Read-k oblivious algebraic branching programs are a natural generalization of the well-studied model of read-once oblivious algebraic branching program (ABP). In this work, we give an exponential lower bound of exp (n/kO(k)) on the width of any read-k oblivious ABP computing some explicit multilinear polynomial f that is computed by a polynomial-size depth-3 circuit. We also study the polynomial identity testing (PIT) problem for this model and obtain a white-box subexponential-time PIT algorithm. The algorithm runs in time 2(n11/2k1) and needs white box access only to know the order in which the variables appear in the ABP.
ACM Transactions on Computation Theory (TOCT) – Association for Computing Machinery
Published: Jan 10, 2018
Keywords: Algebraic complexity theory
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.