Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Integrated coverage and connectivity configuration for energy conservation in sensor networks

Integrated coverage and connectivity configuration for energy conservation in sensor networks An effective approach for energy conservation in wireless sensor networks is scheduling sleep intervals for extraneous nodes while the remaining nodes stay active to provide continuous service. For the sensor network to operate successfully, the active nodes must maintain both sensing coverage and network connectivity. Furthermore, the network must be able to configure itself to any feasible degree of coverage and connectivity in order to support different applications and environments with diverse requirements. This article presents the design and analysis of novel protocols that can dynamically configure a network to achieve guaranteed degrees of coverage and connectivity. This work differs from existing connectivity or coverage maintenance protocols in several key ways. (1) We present a Coverage Configuration Protocol (CCP) that can provide different degrees of coverage requested by applications. This flexibility allows the network to self-configure for a wide range of applications and (possibly dynamic) environments. (2) We provide a geometric analysis of the relationship between coverage and connectivity. This analysis yields key insights for treating coverage and connectivity within a unified framework; in sharp contrast to several existing approaches that address the two problems in isolation. (3) We integrate CCP with SPAN to provide both coverage and connectivity guarantees. (4) We propose a probabilistic coverage model and extend CCP to provide probabilistic coverage guarantees. We demonstrate the capability of our protocols to provide guaranteed coverage and connectivity configurations through both geometric analysis and extensive simulations. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png ACM Transactions on Sensor Networks (TOSN) Association for Computing Machinery

Integrated coverage and connectivity configuration for energy conservation in sensor networks

Loading next page...
 
/lp/association-for-computing-machinery/integrated-coverage-and-connectivity-configuration-for-energy-0GZiToH9Qu
Publisher
Association for Computing Machinery
Copyright
Copyright © 2005 by ACM Inc.
ISSN
1550-4859
DOI
10.1145/1077391.1077394
Publisher site
See Article on Publisher Site

Abstract

An effective approach for energy conservation in wireless sensor networks is scheduling sleep intervals for extraneous nodes while the remaining nodes stay active to provide continuous service. For the sensor network to operate successfully, the active nodes must maintain both sensing coverage and network connectivity. Furthermore, the network must be able to configure itself to any feasible degree of coverage and connectivity in order to support different applications and environments with diverse requirements. This article presents the design and analysis of novel protocols that can dynamically configure a network to achieve guaranteed degrees of coverage and connectivity. This work differs from existing connectivity or coverage maintenance protocols in several key ways. (1) We present a Coverage Configuration Protocol (CCP) that can provide different degrees of coverage requested by applications. This flexibility allows the network to self-configure for a wide range of applications and (possibly dynamic) environments. (2) We provide a geometric analysis of the relationship between coverage and connectivity. This analysis yields key insights for treating coverage and connectivity within a unified framework; in sharp contrast to several existing approaches that address the two problems in isolation. (3) We integrate CCP with SPAN to provide both coverage and connectivity guarantees. (4) We propose a probabilistic coverage model and extend CCP to provide probabilistic coverage guarantees. We demonstrate the capability of our protocols to provide guaranteed coverage and connectivity configurations through both geometric analysis and extensive simulations.

Journal

ACM Transactions on Sensor Networks (TOSN)Association for Computing Machinery

Published: Aug 1, 2005

There are no references for this article.