Access the full text.
Sign up today, get DeepDyve free for 14 days.
References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.
Due to the birth of various new Internet of Things devices, the rapid increase of users, and the limited coverage of infrastructure, computing resources will inevitably become insufficient. Therefore, we consider an unmanned aerial vehicle (UAV)–assisted mobile edge computing system with multiple users, an edge server, a remote cloud server, and an UAV. A UAV, as a relay node, can provide users with extensive communications and certain computing capabilities. Our proposed scheme aims to optimize the unloading decision of the tasks among all users and the allocation of computing and communication resources to minimize overall energy consumption and costs of computing and maximum delay. To solve the joint optimization problem, we propose an efficient USS algorithm, which includes a UAV position optimization algorithm, semi-qualitative relaxation method, and self-adaptive adjustment method. Our numerical results show that the proposed algorithm can significantly reduce the unloading cost of multi-user tasks compared with four other unloading decisions, such as traditional cloud computing, which uses only the edge server.
ACM Transactions on Sensor Networks (TOSN) – Association for Computing Machinery
Published: Apr 18, 2022
Keywords: Mobile edge computing
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.