Access the full text.
Sign up today, get DeepDyve free for 14 days.
References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.
We present a novel approach to fully homomorphic encryption (FHE) that dramatically improves performance and bases security on weaker assumptions. A central conceptual contribution in our work is a new way of constructing leveled, fully homomorphic encryption schemes (capable of evaluating arbitrary polynomial-size circuits of a-priori bounded depth), without Gentrys bootstrapping procedure. Specifically, we offer a choice of FHE schemes based on the learning with error (LWE) or Ring LWE (RLWE) problems that have 2 security against known attacks. We construct the following. (1) A leveled FHE scheme that can evaluate depth-L arithmetic circuits (composed of fan-in 2 gates) using O(. L3) per-gate computation, quasilinear in the security parameter. Security is based on RLWE for an approximation factor exponential in L. This construction does not use the bootstrapping procedure. (2) A leveled FHE scheme that can evaluate depth-L arithmetic circuits (composed of fan-in 2 gates) using O(2) per-gate computation, which is independent of L. Security is based on RLWE for quasipolynomial factors. This construction uses bootstrapping as an optimization. We obtain similar results for LWE, but with worse performance. All previous (leveled) FHE schemes required a per-gate computation of (3.5), and all of them relied on subexponential hardness assumptions. We introduce a number of further optimizations to our scheme based on the Ring LWE assumption. As an example, for circuits of large width (e.g., where a constant fraction of levels have width ()), we can reduce the per-gate computation of the bootstrapped version to O(), independent of L, by batching the bootstrapping operation. At the core of our construction is a new approach for managing the noise in lattice-based ciphertexts, significantly extending the techniques of Brakerski and Vaikuntanathan [2011b].
ACM Transactions on Computation Theory (TOCT) – Association for Computing Machinery
Published: Jul 1, 2014
Keywords: Fully homomorphic encryption
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.