Access the full text.
Sign up today, get DeepDyve free for 14 days.
Classification is a well-studied problem in machine learning and data mining. Classifier performance was originally gauged almost exclusively using predictive accuracy. However, as work in the field progressed, more sophisticated measures of classifier utility that better represented the value of the induced knowledge were introduced. Nonetheless, most work still ignored the cost of acquiring training examples, even though this affects the overall utility of a classifier. In this paper we consider the costs of acquiring the training examples in the data mining process; we analyze the impact of the cost of training data on learning, identify the optimal training set size for a given data set, and analyze the performance of several progressive sampling schemes, which, given the cost of the training data, will generate classifiers that come close to maximizing the overall utility.
ACM SIGKDD Explorations Newsletter – Association for Computing Machinery
Published: Dec 1, 2006
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.