Access the full text.
Sign up today, get DeepDyve free for 14 days.
Task 1 of the 2006 KDD Challenge Cup required classification of pulmonary embolisms (PEs) using variables derived from computed tomography angiography. We present our approach to the challenge and justification for our choices. We used boosted trees to perform the main classification task, but modified the algorithm to address idiosyncrasies of the scoring criteria. The two main modifications were: 1) changing the dependent variable in the training set to account for multiple PEs per patient, and 2) incorporating neighborhood information through augmentation of the set of predictor variables. Both of these resulted in measurable predictive improvement. In addition, we discuss a statistically based method for setting the classification threshold.
ACM SIGKDD Explorations Newsletter – Association for Computing Machinery
Published: Dec 1, 2006
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.