Access the full text.
Sign up today, get DeepDyve free for 14 days.
We introduce a new information-theoretic measure, which we call Public Information Complexity (PIC), as a tool for the study of multi-party computation protocols, and of quantities such as their communication complexity, or the amount of randomness they require in the context of information-theoretic private computations. We are able to use this measure directly in the natural asynchronous message-passing peer-to-peer model and show a number of interesting properties and applications of our new notion: The Public Information Complexity is a lower bound on the Communication Complexity and an upper bound on the Information Complexity; the difference between the Public Information Complexity and the Information Complexity provides a lower bound on the amount of randomness used in a protocol; any communication protocol can be compressed to its Public Information Cost; and an explicit calculation of the zero-error Public Information Complexity of the k-party, n-bit Parity function, where a player outputs the bitwise parity of the inputs. The latter result also establishes that the amount of randomness needed by a private protocol that computes this function is (n).
ACM Transactions on Computation Theory (TOCT) – Association for Computing Machinery
Published: Mar 17, 2019
Keywords: Multi-party communication complexity
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.