Access the full text.
Sign up today, get DeepDyve free for 14 days.
Wireless sensor networks have enabled smart infrastructures and novel applications. With the recent roll-out of Narrowband IoT (NB-IoT) cellular radio technology, wireless sensors can be widely deployed for data collection in cities around the world. However, empirical evidence regarding the coverage and connectivity of NB-IoT in dense urban areas is limited. This article presents an empirical study that focuses on evaluating the coverage and connectivity of NB-IoT in a dense urban environment. We have designed an NB-IoT sensor node and deployed over 100 of them in high-rise apartment buildings in Hong Kong. These sensor nodes utilize a commercial NB-IoT network to collect high-resolution water flow data for machine learning model training and provide timely feedback to users. We collect and analyze the empirical NB-IoT signal measurements from the sensor nodes deployed in various challenging outdoor and indoor environments for over three months. These empirical measurements reveal correlations between NB-IoT connectivity and sensor installation environments. We also observe that inter-cell interference, as a result of coverage by multiple neighboring NB-IoT cells in a dense urban environment, is a source of connectivity degradation. We discuss potential issues that IoT application designers and system integrators might encounter in practical NB-IoT devices deployment, and we propose a transmission decision algorithm based on signal measurements for mitigating energy wasted due to transmission failures. Finally, we demonstrate the results and the benefits of using high-resolution water flow data collected by our purpose-built NB-IoT sensor nodes for studying the patterns of domestic water consumption in Hong Kong.
ACM Transactions on Sensor Networks (TOSN) – Association for Computing Machinery
Published: Sep 15, 2022
Keywords: Narrowband Internet of Things
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.